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Abstract 

 

We present a non-blocking algorithm for a concurrent Heap in asynchronous shared memory 

multiprocessors.  Processors on these machines often execute instructions at varying speeds and 

are subject to arbitrarily long delays.  Our implementation supports Non-blocking FindMin, 

Delete, and Insert operations on heap.  Non-blocking techniques avoid the drawbacks associated 

with mutual exclusion and admit improved parallelism.  Insert and Delete operations in Heap 

take more than one atomic instruction to complete, thus, it is possible that a new operation may 

be started before the previous one completes, leaving heap inconsistent between operations.  

We have represented Heap as an array of pointers.  Any modifications to the heap are done by 

using single-word Compare&Swap instructions.  If all update operations modify different parts of 

the heap, they run completely concurrently.  Our approach guarantees lock freedom for all 

concurrent threads and wait freedom if threads execute operations on different nodes of heap. 
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Chapter 1 

Introduction 

 

We are living in a world of concurrency revolution where Multi-core architectures and multi-

threading are a need of the hour rather than a 'good-to-have' factor.  Clock frequency has hardly 

advanced in recent years, and focus has shifted to packing more execution cores into a single 

chip.   

 What is multicore technology?  In the early years of the first decade of 21st century, 

desktop PCs hit a performance wall.  Intel thought that it could keep raising the clock speeds and 

address the cooling issues, but ‘Heat wall’ sabotaged its plans on the way to 4GHz.  The heat wall 

required a heat sink and fan almost as big as a power supply to keep the CPU cool.  Even 

experiments with liquid nitrogen and antifreeze coolants did not prove to be of much help [28].  

This lead to the idea of going multicore, and to speed up PCs by dividing the tasks among cores.   

 Multi-core means having several cores on one chip, each running several threads in 

parallel.   When there is more than one core available, a scheduler can give processes slices of 

time on different CPUs.   This way a dual-core processor allows two things to happen at once.   

The more the number of cores,  the more processes can run simultaneously.    

 As per Wikipedia report [18], until 2005 single-core processors outnumbered multi-core 

processors.  In the second half of 2006 the best processors were dual-core processors.  Since 

2006 the development has gone on, so that the new processors get four or more independent 
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microprocessors.  Today, single-core processors are popular only in embedded systems [18].  

Multi cores are commonplace these days in desktop computers, laptops and mobile phones. 

 Although driven by hardware changes, it calls for concurrency in software to fully exploit 

the throughput gains of multi-core processors.  Modern software relies on high-level data 

structures.  A data structure is a set of rules on how to organize data units in memory in a way 

such that specific operations on that data can be executed more efficiently.  With the advent of 

multicore processors, concurrent data structures are required to coordinate access to shared 

resources.  These data structures allow multiple threads to access same data simultaneously [12].  

This necessitates contention management between simultaneously active threads for operations 

to produce correct results and data structure to stay valid.  Designing such data structures is 

challenging compared to sequential ones as concurrent threads may have interleaving steps 

leading to unexpected and potentially incorrect outcomes.  Adding concurrency to a sequential 

data structure is bound to make it more complex and less efficient.  However, the ubiquity of 

multicore systems makes concurrent data structures inevitable. 

 The simplest step towards making a sequential data structure concurrent is by means of 

locking [11].  Locking provides the lock owner an exclusive access to data structure [4].  A more 

sophisticated version of locking is fine-grained locking which locks only some part of the data 

structure.  These approaches are called ‘blocking’ and have several issues as explained in Section 

2.3. These issues are abated by ‘non-blocking’ implementation of data structure.  In a non-

blocking algorithm, failure or delay of one thread does not suspend progress of another thread 

[11]. 
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 The subject of this thesis is one such fundamental data structure - HEAP.  It is a tree based 

data structure widely used in heapsort, selection algorithms, graph algorithms and priority 

queues [37].  It can be classified as max heap or min heap based on the ordering of nodes.  If 

parent nodes have higher key-values than child nodes, the heap is called a max-heap.  The top-

most node (root) of a max-heap contains the highest value.  If parent nodes contain lower values 

than child nodes, it is known as a min-heap. The root node of a min heap contains the lowest 

value in the heap.  Throughout this thesis, we will use min-heap for our illustrations and 

examples.  Hence, whenever we use the word ‘heap’, it refers to a min-heap.  There are three 

main operations in heap: insert, delete and find-min.  Insert adds a new node to the heap.  The 

delete operation removes root node from heap and returns its value.  Find-min operation returns 

the value of root node without actually removing it from heap.  

 An interesting feature of insert and delete operations on heap is that they are a sequence 

of many sub-operations, called bubble-up and bubble-down.  After insertion/ deletion, nodes are 

moved up/down the heap.  It means that a single operation can potentially access multiple nodes 

on the heap.  In a concurrent heap, where multiple threads are working concurrently, this poses 

an impediment to maintaining a consistent state of the heap.  We present a non-blocking 

implementation of a concurrent heap which is linearizable and immune to conflicts to the best 

of our knowledge. 

 

1.1 Contribution 

We present a non-blocking implementation of a heap whose operations make changes in heap 

atomically in an asynchronous shared memory system.  Our implementation offers lock-free 
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insert, delete and wait-free find-min operations. The Insert operation adds a new node to the 

heap.  The Delete operation removes the root node from the heap and returns its value.  Find-

min operation returns the value of the root node without actually removing it from the heap.  

 We have represented the heap as an array of pointers as opposed to traditional 

representation as an array.  Any updates to shared data structures are made atomically by 

changing one of the pointers using CAS.  Potential conflicts in operations when multiple threads 

are trying to access the same node are confronted by usage of flagging and yielding.  The concept 

of flagging enables threads to help other delayed operations or crashed threads.  This further 

ensures that as long as there is an active thread in the system, pending operations on its way 

would be completed and the system would make progress.  We have provided a high level 

algorithm and detailed pseudo-code followed by proofs for atomicity, conflict resolution and 

linearizability. 

 

1.2 Outline 

In Chapter 2 we will provide a background in multi-core systems.  We will give an overview of 

shared memory systems and key concepts of multithreading, atomicity, execution history and 

linearizability.  We will discuss various synchronization techniques in threads including pros and 

cons of different techniques.  It will also include a brief explanation of blocking and non-blocking 

systems in terms of lock-free, wait-free and obstruction-free implementations. 

 The next step is to apply the lessons of Chapter 2 into building concurrent data structures.  

In Chapter 3 we will study Maurice Herlihy’s universal constructions for transforming a sequential 
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algorithm into non-blocking concurrent one.  We will study concurrent implementations of 

various data structures like queues, lists, doubly-linked lists and binary trees.  We will also briefly 

discuss the work done by various researchers on heaps over the years. 

 Chapter 4 will give an insight into our work.  It will discuss our data representation, tools 

and techniques followed by the high-level algorithm.  We will explain the functions in our heap 

algorithm in detail.  Viable conflicting scenarios will be illustrated with expected outcomes. 

Chapter will conclude with detailed the pseudocode for our algorithm. 

 Chapter 5 consists of invariants and proofs for atomicity, conflict resolution and 

linearizability of our proposed approach. 

 We will conclude the thesis with Chapter 6 which will give our final words on the work 

and scope of improvement or future recommendations for work in this direction.   
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Chapter 2 

Background 

 

The definition of modern systems that support concurrent programming is pretty intricate.  The 

basic one being the number of processors in the system, making it uni(single)-processor or 

multiprocessor.  Multiple systems regarded as computation nodes can be connected despite 

physical separation to form a distributed system.  These computation nodes can be connected 

via a message passing system or a shared memory system. 

 

2.1 Shared Memory System 

In message passing system, communication between various nodes is done by exchanging 

information packages over the inter-connection network [11].  A shared memory system presents 

a higher level of abstraction, and gives the impression of existence of a global memory for all 

nodes, with shared access possibilities.  In this thesis, we will concentrate on shared memory 

systems.  

  

 

 

Figure 2.1 Message passing vs Shared memory (for three processes S1, S2, and S3) 

S1

S2 S3

S1

S2 S3
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 A shared memory system can be Uniform Memory Access (UMA) architecture or Non-

Uniform memory Access (NUMA) architecture. In UMA, shared memory appears to be 

equidistant from each processor, thus, response time for memory access is the same all over the 

system. In NUMA, memory access response time varies in the system depending on the actual 

distance between a processor and real memory.   

 

2.2 Multicore Systems 

A multicore processor is a single computing component with more than one independent 

processor, referred to as cores.  They can execute several instructions simultaneously, thereby, 

increasing overall speed of the system. Adding more cores alone does not guarantee superior 

functionality; as asserted by Amdahl’s law, gain in performance is largely driven by how much of 

the code can be parallelized [3].  As these concurrent processes work on a shared memory, they 

pose more problems like race conditions and cache coherence. 

Definition 2.1 Race condition: The situation when multiple processes access and manipulate the 

same data concurrently and the outcome of the execution depends on the particular order in 

which the access takes place, is called a race condition [4]. 

Definition 2.2 Cache Coherence: A consistent view of individual cache lines containing data from 

a shared resource.  An update to value of a variable in one cache must be immediately reflected 

in all other caches where the variable resides [4]. 

 It is vital that processes are well synchronized to avoid race conditions. We will learn more 

about this in next section. 
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2.3 Concurrent data structures 

Concurrent data structures allow multiple processes to access and update data simultaneously 

on shared memory systems [12].  Asynchronous processes and interleaving executions increase 

complexity while designing such data structures.  Well-founded conflict resolution rules must be 

set to avoid unexpected outcomes. In this section, we will discuss various aspects of designing 

concurrent data structures, like synchronization techniques and correctness verification. 

2.1.1   Synchronization techniques 

Synchronization techniques for a concurrent system are categorized into two types – blocking 

and non-blocking [11]. 

2.3.1.1   Blocking 
 

The traditional approach to regulate access to shared data is by means of locking.  Locking is a 

traditional synchronization mechanism which provides the lock owner an exclusive access of a 

shared resource [4]. Software constructs like Semaphores, Monitors, Mutex are examples of low-

level locking primitives.  Using a single lock for the entire shared object is called Coarse grained 

locking [11]. It is easier to implement, with no room for unintended interference, but it blocks 

system parallelism.  Fine grained locking supports parallelism as it provides a process exclusive 

access only to a part of the shared object, although the same feature makes it more difficult to 

implement.  Lock based synchronization is poorly suited for asynchronous, fault-tolerant 

systems.  One faulty process can block or slow down the entire system.  Locking can lead to error 

conditions such as deadlock, livelock, convoying and priority inversion. 
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Definition 2.3  Deadlock: A state where two or more processes are waiting indefinitely for an 

event (resource acquisition or release) that can be caused only by one of the waiting processes. 

When such a state is reached, these processes are said to be deadlocked [4]. 

Definition 2.4 Livelock: A livelock is similar to a deadlock, except that the states of the processes 

involved in the livelock constantly change with regard to one another, with none progressing [5]. 

Definition 2.5 Starvation: A situation in which a runnable process is overlooked indefinitely by 

the scheduler; although it is able to proceed, it is never chosen [18]. 

 A lock-based implementation is called blocking because an unexpected delay by one 

thread can prevent others from making process.  Disadvantages of blocking are curbed by non-

blocking mechanisms. 

 

2.3.1.2   Non-Blocking 
 

A concurrent object implementation is non-blocking if it guarantees the system as a whole will 

make progress despite individual halting failures or delays.  It can be classified into three 

categories. 

Lock free – An implementation is lock-free if it satisfies that when the program threads are run 

sufficiently long at least one of the threads makes progress.  It allows individual threads to starve 

but guarantees system-wide throughput [11]. 

Obstruction free – In an obstruction-free implementation, if at a certain point, a process executes 

in isolation and finishes in a finite number of steps from that point [11].  

Wait free – A wait free implementation guarantees that every process will complete its execution 

within a finite number of steps [13].  
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 Wait-freedom is the strongest non-blocking guarantee of progress [11].  A wait-free 

implementation is necessarily lock-free, but not vice-versa, since a lock free implementation may 

permit individual processes to starve. 

 How can we prove the correctness of a concurrent data structure?  Is there a standard 

verification technique using which programmers can specify and reason about concurrent 

objects?  The answer to these questions is Linearizability. 

 

2.4 Linearizability 

Linearizability is the cardinal correctness condition for concurrent systems.  Maurice Herlihy and 

Jeanette Wing [2] introduced the notion of Linearizability in 1990.  It is the standard technique 

for demonstrating that a non-blocking implementation of an object is correct. 

 In a sequential system, where an object’s operations are invoked one at a time by a single 

process, the meaning of the operations can be given by pre and post conditions.  In a concurrent 

system, simultaneously executing processes make this task complex [12].  Linearizability provides 

the illusion that each operation applied by concurrent processes takes effect instantaneously at 

some point between its invocation and its response, implying that the meaning of a concurrent 

object’s operations can also be given by pre- and post-conditions [11].  Operations that do not 

overlap take effect in their “real-time” order.  

  A concurrent system is linearizable if and only if each individual object is linearizable [14].  

Linearizability facilitates certain kinds of formal (and informal) reasoning by transforming 

assertions about complex concurrent behavior into assertions about simpler sequential behavior.  
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It is a safety property; it states that certain interleaving cannot occur, but makes no guarantees 

about what must occur [2]. 

 

2.5 Compare and Swap (CAS) 

Modern multiprocessors provide hardware support of atomic read-modify-write operations in 

order to facilitate inter-thread coordination and synchronization.  A Compare-and-swap (CAS) 

operation is often the synchronization primitive of choice for implementing concurrent data 

structures – both lock-based and non-blocking [1] – and is supported by hardware in most 

contemporary multiprocessor architectures [6].  The CAS operation takes three arguments: a 

memory address, an old value, and a new value.  If the address stores the old value, it is replaced 

with the new value; otherwise, it is unchanged [34].  The success or failure of the operation is 

then reported back to the calling thread.  CAS is widely available and used because its atomic 

semantics allows any number of concurrent threads to update shared data without any loss of 

data consistency.  

 Literature includes a wide range of atomic instructions like getAndDecrement(), swap(), 

and many others.  Identifying the right one to be used based on synchronization requirements of 

an algorithm is important.  The mechanism to evaluate the power of various synchronization 

primitives is Consensus.  Consensus number is the maximum number of threads for which the 

consensus problem can be solved. 

Consensus 
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A consensus protocol is a system of n processes that communicates through a set of shared 

objects [21].  The processes each start with an input value from some domain; they communicate 

with one another by applying operations to the shared objects; and they eventually agree on a 

common input value and halt [2].  

A consensus protocol is required to be 

i. consistent: distinct processes never decide on distinct values 

ii. wait-free:   each process decides after a finite number of steps 

iii. valid:           the common decision value is the input to some process 

 As proven in Herlihy’s seminal paper [1], a CAS register has an infinite consensus number.  

It can implement, together with reads and writes, any object in a wait-free manner. 

 The correctness of algorithms using CAS often depends on the fact that, if the CAS 

succeeds, the old value has not been changed since the preceding read [11].  Suppose the value 

of a variable was A when CAS operation began. Meanwhile, the value was changed by another 

thread to B and then back to A.  In this scenario, CAS can succeed. However, it should not; since 

value was not A throughout the operation.  This is called the ABA problem.  A good 

implementation must have strategies to avoid the ABA problem.  Some of the conventional 

solutions are usage of counters and timestamps.  Counter solution does not guarantee that the 

ABA problem will not occur, but it makes it extremely unlikely [18].  Valois’s reference counting 

technique guarantees preventing the ABA problem without the need for modification counters 

or the double-word CAS [18].   
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Chapter 3 

Literature review 

 

The increasing popularity of multi-core systems has lead to an opulent amount of research being 

done in various areas like locking, atomicity, and linearizability.  One of the prominent areas is 

designing concurrent data structures.  This field is focused on developing concurrent versions of 

the fundamental data structures like stacks, queues, search trees, linked lists, heaps, etc., due to 

their ubiquitous usage.  In this chapter, we will look at some of the ground-breaking work in this 

field along with different flavors of implementations for various data structures. Section 3.1 will 

present the concept of universal transformations.  In Section 3.2, we will have a closer look at 

various implementations of linked lists.  Our thesis has been greatly influenced by N. Shaifei’s 

work [24] in this area. Section 3.3 will showcase existing research on heaps.  In Section 3.4, we 

will provide some references to highlight research on some basic data structures like stacks, 

queues, search trees, etc. 

 

3.1 Universal Transformation 

In one of his pioneering papers [12], Herlihy introduced the notion of universality.  He presented 

a translation protocol that produces equivalent non-blocking concurrent algorithms for given 

sequential algorithms.  For making any changes to the shared object, a copy is made, updates are 

applied to the copy and then the shared object is replaced with its updated copy using a CAS 
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operation.  This is done as a single atomic operation, ensuring that the new value is computed 

based on the latest information.  This protocol could not steer clear of two issues – the ABA 

problem and the overhead of copying large objects.  

 Herlihy then proposed another transformation protocol based on the fact that each data 

structure is made up of blocks connected by pointers [11].  Only the blocks, which are to be 

updated or contain pointers to the blocks which are to be modified, need to be copied. This 

approach also consisted of a few problem areas like lots of copying, the programmer had to 

incorporate logic for breaking the structure into proper blocks, and it could not be used for 

efficient transformation of data structures like priority queues implemented as linked lists.  

 The idea of universal helping was another milestone in wait-free implementation of 

concurrent data structures.  It suggests adding extra code so that the active processes ‘help’ the 

blocked processes terminate, so that the resulting implementation is wait-free. an 

implementation has helping if in some situations, a process makes an undecided operation of 

another process becomes decided on some value.  Attiya, Castaneda, and Hendler presented two 

approaches to formalize helping in wait-free implementations of shared objects [7].  They 

proposed that objects for which there are wait-free implementations can be separated from 

those with only non-blocking implementations, using primitives with a finite consensus number.  

An implementation using test-and-set showed that any wait-free queue must have nontrivial 

helping while this is not true for stacks.  
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3.2 Linked list  

A list stores a sequence of items.  It is one of the elementary data structures and has many 

applications in distributed systems including processor scheduling [35], memory management 

[37] and sparse matrix computations [36].  It is also used as a building block for more complicated 

data structures such as deques, skip lists and Fibonacci heaps. 

 The first non-blocking implementation of singly-linked lists using CAS was given by Valois 

[32].  This implementation made use of ‘cursors’. A single cursor points to three consecutive 

nodes in the list.  If the part of the list that the cursor is associated with is changed, the cursor 

becomes invalidated.  To restore the validity of its own cursor, a process may have to perform 

CAS steps to help complete other processes' updates.  One of the drawbacks is that it inserts 

auxiliary nodes between adjacent nodes, so the list might be longer than it is supposed to be. 

 Fomitchev and Ruppert [16] also gave a non-blocking singly-linked list implementation 

using CAS steps.  Three CAS steps are performed to remove a node from the list. Similar to [22], 

each operation searches the list for a node on which to operate.  Each node also has a back-link 

pointer.  When a node is deleted, a back-link pointer is set to its last predecessor.  If an 

operation's CAS fails, it uses the back-link pointers to resume its operation.  However, these back-

link pointers cannot be used to move a cursor to the left since the back-link pointers of only 

removed nodes are set.  They provided a correctness proof and an amortized analysis for their 

implementation.  Timnat [31] used the cooperative technique to present a wait-free singly-linked 

list using CAS steps.  They extended existing implementations by using a wait-free helping 

mechanism. 
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 Only a few non-blocking implementations have been proposed for doubly-linked-lists.  

Greenwald [20] presented an implementation using 2-word CAS. In his approach, all processes 

cooperate to execute a single piece of sequential code. An operation executes a step of the 

sequential code and increments a shared counter that is equal to the line number of the running 

code simultaneously using 2-word CAS.  When one operation is completed, each process can try 

to update the program counter to the beginning of the operation it wants to perform next.  This 

implementation does not support any concurrency.  

 Attiya and Hillel [15] also proposed a 3-coloring doubly-linked list implementation using 

2-word CAS, but it only supports update operations.  Three ordered colors are assigned to nodes 

in the list such that any two adjacent nodes have distinct colors.  In their implementation, each 

update operation needs to acquire three consecutive nodes by using CAS steps to write its id into 

the nodes before performing its update.  If two of the nodes have the same color, a 2-word CAS 

is used to acquire those two nodes.  If a process does not acquire a node because it is acquired 

by another operation, the process first helps the other operation and then continues its own 

operation. The operation acquires nodes in the order of their colors.  One of the main highlights 

of this implementation is that concurrent operations can interfere with one another only if they 

are changing nodes close to each other.  The ABA problem is avoided by storing both a pointer 

and a counter in a single word.  They also give a restricted implementation using a single-word 

CAS, in which deletions can be performed only at the ends of the list. 

 Sundell and Tsigas [30] gave the first non-blocking doubly-linked list using single-word 

CAS.  It made use of cursors to access the list.  Shaifei [24] came up with a new approach to design 

non-blocking, linearizable implementations of shared data structures using the concept of 
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cursors and info objects.  Her approach has been applied to two data structures - doubly-linked 

lists and Patricia tries.  Both implementations are linearizable.  Every update operation calls one 

fairly simple routine to perform the real work.  This is the first amortized analysis for a non-

blocking doubly-linked list with detailed correctness proofs.  Our approach is largely influenced 

by Shaifei’s work in terms of modularity of code and the using concept of info objects for update 

operations. 

 

3.3 Heap 

The common usage of a heap is as a priority queue data structure which maintains a collection 

(multiset) of items ordered according to a priority associated with each item.  Priority queues are 

used in graph algorithms, discrete event simulation, schedulers and modern SAT solvers.  General 

operations provided by heap are: insert (d, p), which adds a data item d with priority p, and 

extractMin (), which removes and returns the highest priority data item. Binary heaps are 

represented as arrays: the root is located at position 1, and the left and right children of the node 

at location i are located at positions 2i and 2i+1, respectively.  Position 0 is not used. 

 Tamir, Morrison, and Rinetzky [8] proposed Champ, a heap-based concurrent priority 

queue which allows one to change the priority of an element after its insertion. This allows 

algorithms like Dijkstra’s single source shortest path algorithm to be more efficient.  It uses an 

array based binary heap with the use of tags to identify elements in the queue, instead of their 

data items.  This allows storing multiple elements with the same data item in the queue.  First, 

every operation grabs the locks it requires and inspects, adds, removes, or changes the shared 

state.  Then, it invokes bubbleUp(e) or bubbleDown(e) to locally restore the heap property. With 
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increased parallelism, Champ’s changeKey () operation improves the client overall performance 

by saving it from doing wasted work.  This occurs despite the fact that Champ’s extractMin () and 

insert () operations do not scale as well as in prior designs.  Skiplist outperforms Champ since 

skiplist’s insert () and extractMin () are more scalable and efficient than Champ’s.  

 Afek, Barr and Schiff [10] presented the Power priority queue, a recursive and fast 

construction of an n-element priority queue from exponentially smaller priority queues.  The 

main construction idea is to sort n elements by partitioning into square root n elements into 

square root n fixed size lists, followed by sorting and merging the lists.  It uses a simple in-

memory(RAM) FIFO queue called Rlist implemented by linked lists with push and pop operations. 

 The insert operation on a heap is a bottom-up procedure, while a delete operation is a 

top-down procedure.  Concurrent inserts and deletes can thus create a conflicting or deadlock 

situation.  An algorithm proposed by Rao and Kumar [ 9] changes the conventional bottom-up 

insert operation to a top-down procedure which presents a valuable solution to avoid this 

problem.  Each node must be locked before accessing it and unlocked after that.  Very often the 

consecutive insert procedures traverse the same path and this may lead to a race condition when 

accessing the common nodes.   

 Ayani [8] proposed the LA-algorithm for concurrent insertions on priority queues.  

Conventional heap implementations allow insertion of a new node at the next available location 

in the heap, going from left to right.  The LA-algorithm directs any two consecutive insertion 

requests to two different subtrees and thus provides a possibility to perform multiple insertions 

in parallel. Performance evaluation on a Sequent Symmetry shared memory multiprocessor 
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indicated that the algorithm is a promising approach.  However, it is a fine-grained locking 

mechanism and is plagued with the drawbacks of locking.  

 The first wait-free algorithm to manipulate heaps was a result of Herlihy's work on his 

methodology for implementing concurrent objects [12].  This has been mentioned in Section 3.1.  

It requires a thread to check out a pointer to the object, make and change a copy of the object, 

and place the copy in place of the old object.  Note that Herlihy and Shavit also gave a fine-grained 

locking based implementation of a heap in [11].  

 Greg Barnes [9] examined heap algorithms and came up with an abstract algorithm for a 

wait-free implementation.  The key feature of his algorithm is his unique representation of a heap 

- as an array of pointers to nodes.  Each node is a record consisting of the key, some flags, and a 

few auxiliary variables.  By using Load Linked and Store Conditional on the pointer to a record, 

the algorithm atomically checks the entire record for updates.  We have borrowed the heap 

representation aspect of this algorithm for our approach.   

 Israeli and Rappoport [17] gave a non-blocking implementation which supports deleteMin 

and insert operations using transactional memory-based atomic primitives.  Their approach uses 

some bits from the node value to store information about the current operation on the node.  

Thus, even if the process dies, another thread which comes across this node can help it with the 

operation.  This supports the non-blocking property, but also lowers the range of values that can 

be stored in a node.  We have avoided this constraint by storing information in a separate 

structure. 
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3.4 Other Data Structures 

There has been a lot of interesting work on various data structures.  We will mention a few 

interesting papers here for the reader’s reference.  

 Michael and Scott [36] presented simple lock-based concurrent implementations for both 

stack and queue.  Treiber [35] proposed a lock-free implementation of a stack.  It represents a 

stack using a singly-linked list with top pointer.  Modifications to top pointer are done atomically 

using the CAS atomic instruction.  Michael and Scott [33] also gave a two-lock queue algorithm 

in which one enqueue and one dequeue can proceed concurrently.  The two-lock concurrent 

queue is livelock free and outperforms a single lock when several processes are competing 

simultaneously for access - good for busy queues on machines with non-universal atomic 

primitives like test&set.  Scherer, Lea, and Scott [29] proposed two new non-blocking and 

contention-free implementations of synchronous queues.  Adam, Morrison, Afek [17] introduced 

LCRQ - a linearizable non-blocking FIFO queue for x86 processors.  They used a combining-based 

algorithm with CAS.  The idea behind combining is that the synchronization cost of a contended 

CAS hot spot is so large that performing work serially is more efficient.  They proved that 

combining based queues scale better than CAS-based list queues.  Ellen, Fatourou, Ruppert, and 

Breugel [26] proposed the first non-blocking, linearizable Binary Search Tree implementation 

using CAS operations.  Natarajan, Savoie and Mittal [27] gave a wait-free implementation of a 

concurrent red-black tree using CAS instructions.  Afek, Kaplan, Korenfeld, Morrison and Tarjan 

[23] presented a practical concurrent self-adjusting search tree called a CBTree (Counting Based 

Tree) that scales with the amount of concurrency.  Crain, Gramoli and Raynal [25] proposed a 
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non-blocking implementation of a skip list.  Shaifei [24] applied her approach for concurrent data 

structures to Patricia Tries.   
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Chapter 4 

Our Implementation of Heap 

 

A heap is a specialized tree-based data structure.  Placement of nodes in various levels of the 

heap in increasing or decreasing order makes the heap a min-heap or max-heap.  A heap must 

satisfy this property at all times. Heap is an inherently sequential data structure usually 

implemented in an array.  After any modification to the heap (insert/delete), the heap property 

is restored using internal operations.  

 In a single-core system, only one operation is performed at a time and the heap is 

guaranteed to be in a stable state in-between operations.  In multi-core systems, multiple 

operations can be active concurrently.  Being a shared data structure in this case, heap operations 

must be ordered in some way to guarantee results identical to a sequential execution.  One way 

of doing this is to provide an operation exclusive access to the heap using locking.  The heap 

remains inaccessible to other active operations, and they must wait till the lock-owning operation 

finishes.  Another way can be fine-grained locking, where an operation holds exclusive access 

only to certain nodes on the heap at one time.  Both of these ideas fall under the category of 

‘blocking’ techniques as threads waiting for access to locked nodes cannot make any progress. 

This makes the system prone to delays, deadlocks and resource under-utilization. 
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 Our algorithm is an endeavor to parallelize operations on heaps in a non-blocking manner.  

It evades the cons of blocking techniques and also checks the risks associated with concurrent 

operations on shared data.  

 In this chapter, we describe our approach to implementing a non-blocking linearizable 

Heap.  In our illustrations and examples, we will talk about a min-heap wherein the root node is 

the lowest valued node in the heap and values increase as we move down the heap levels. This 

chapter is divided into six sections. 

 Section 4.1 presents three crucial tools used in this implementation. The three tools are 

heap representation as an array of pointers, the concept of flagging and CAS usage. 

  In Section 4.2 we present an overview of our algorithm.  We provide an overall idea of 

INSERT, DELETE and FIND-MIN operations.  This section highlights how the key concepts of ‘info 

structures’ and ‘flagging a node’ work together to make this algorithm non-blocking. 

 In Section 4.3 we describe the data structures in detail.  Our implementation consists of 

two main data structures – An array of pointers and a dictionary.  The heap is represented as an 

array of pointers to nodes and info objects.  A dictionary is used to record operation ids and the 

location where corresponding operation is currently active. 

 Section 4.4 consists of our algorithm. 

 In Section 4.5 we will talk about the heap operations.  There are 3 main operations on 

heaps – insert, delete and find-min.  There are 6 sub-operations – BubbleUp (BU), BubbleDown 

(BD), CopyToRoot(CTR), UPdateRoot(UPR), GetParent, and GetChild. 
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 Section 4.6 is composed of special cases of various heap operations.  We see the results 

of conflicting scenarios between concurrent BubbleUp (BU) and BubbleDown (BD) operations 

using examples. 

 Section 4.7 comprises the pseudocode. 

 

4.1 Tools and Techniques 

In a multi-core system, allowing concurrent processes to access a shared data structure in parallel 

is a very complex task.  To establish the non-blocking property, we must ensure that concurrent 

threads make progress regardless of other threads.  It is likely that different threads will execute 

at different speeds and more than one thread might access a node on the heap at the same time.  

Multiple threads trying to update the same node simultaneously would further lead to race 

conditions.  To avoid data inconsistency and race conditions, it is important that heap nodes are 

always updated atomically.   

 We know that in a sequential execution, the heap property is restored after every 

insert/delete operation.  Restoring the heap property requires traversing the heap and swapping 

nodes.  Thus, one insert or delete operation in the Heap affects multiple nodes, thereby taking 

more than one atomic instruction to complete.  Also, it is possible that a new operation may be 

started before the previous one completes, leaving the heap inconsistent between operations.  

We have attended to these complications by three means in our proposed algorithm – the choice 

of data structure to implement the heap, the concept of flagging and the single word Compare-

and-Swap (CAS) operation. 
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4.1.1   Heap implementation as Array of Pointers 

Generally, the heap is implemented in an array.  For a parent node at location x, left and right 

child nodes are stored at locations 2x and 2x+1 in the heap.  It does not require pointers between 

elements.  This implementation is simple and easy; however in a shared memory concurrent 

system, it poses the risk of data inconsistency.   

 Suppose a heap node has three fields – value(v), priority(p) and operation id (o).  There 

are three operations A, B, C trying to access/update the same node simultaneously.  Operation A 

is updating the node while B and C are reading.  A has successfully updated v to v’, when B starts 

reading the node.  B finishes reading and then A updated p to p’.  At this time C reads the node.  

After C is done, A updated o to o’.  At the end of operations A, B and C, they have the following 

values for the same node. 

 A: (v’, p’, o’)     B: (v’,p,o)    C: (v’, p’ o) 

 These values were indeed true at some instant in time; however we want an update 

operation on a node to appear as if it was atomic. i.e. v, p, o were changed to v’, p’, o’ at the same 

instant in time.  To achieve this result, we have represented the heap as an array of pointers 

(Heap Array). Starting from index 1, each index denotes a location on the heap and contains a 

field called node object pointer.  

Definition 4.6. Node object represents a node on the heap.  It contains the value, priority etc 

information that is intended to be stored on the heap. 

Definition 4.7 Node object pointer is the second component of an array index.  It points to the 

node object for the corresponding heap location. 
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 Using this representation, the node at any location can be changed by changing the value 

of the node object pointer.  Let’s assume the same example as above (node with values v, p, o).  

Now, to update any of the values, thread A will create a new node with values v’, p’, o’.  Then, it 

will change the node object pointer to the address of the new node.  This can be done atomically 

in one step.  

 With multiple operations working concurrently on various nodes in the heap, we need 

some mechanism to locate the node where an operation is currently active.  This can be done by 

traversing HeapArray.  However, in a large heap, it would be a time consuming process. To serve 

this purpose efficiently, another data structure used by this algorithm is a dictionary (Opdict).  It 

records the operation id and the location on heap where the operation is currently active. 

Definition 4.8 Operation Id is a unique number assigned to every operation on the heap. 

 These data structures will be discussed in detail in Section 4.2.  Now, we have the ability 

to replace multiple node values in one step in the heap.  Next, we will discuss how to make the 

algorithm non-blocking and ensure progress even if some thread is delayed/crashed.  

4.1.2   Concept of FLAGGING 

To maintain the consistency of a concurrent shared data structure, we need a mechanism to 

ensure that there is some ordering in operations executing on the same location. If insert and 

delete operations are active on the same node of the heap, they must be prioritized to avoid race 

conditions. What if the higher priority operation crashed while working on the node? Will the 

lower priority operation waiting for the node starve forever? If we allow a lower priority operation 

to access the node after waiting for a fixed time, how will it identify the updates done by the 
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previously crashed thread and fix/overwrite them? Answers to all these questions lie in the 

concept of ‘flagging’. 

 Earlier, we mentioned that the array contains a node object pointer.  There is another 

pointer in each array component, known as, the info object pointer.  The value of this field is null 

by default.  ‘Flagging’ is the process of changing this value from null to a valid pointer to an info 

object.  

Definition 4.9. Info object is an operation descriptor object.  It contains all necessary details to 

complete an operation successfully. 

Definition 4.10.  Info object pointer is the first component of an array index.  It points to the Info 

object for that location on the heap.  

 If the info object pointer for a location is null, it means that no operation is currently active 

on that node. Like locking, the main purpose of flagging a location is to give an operation exclusive 

permission to change the fields of that location. The advantage of flagging over locking is that 

failure of one process does not block other processes from making progress, since info objects 

store enough information for an operation to be completed. It also helps faster threads to avoid 

being blocked by slow threads working on shared locations on the heap. 

 Any update operation on HeapArray flags the location to be updated, makes the required 

changes and unflags it on completion. Other operations trying to access this location meanwhile, 

read the info object and help the active operation to complete. We learned about the crucial role 

that flagging plays in this algorithm. But in a multi-core system, how can we ensure that flagging 

is done atomically? The answer to this lies in the next section. 
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4.1.3   Compare-and-Swap operation 

The Compare-and-Swap (CAS) instruction when called with three parameters CAS (x, old, new) 

returns false if the value of variable x is not equal to expected old value [34].  Otherwise, it 

changes the value of variable x from the expected value old to some value new and returns true.  

For more details on CAS, refer the Section 2.3. 

 In our algorithm, values of the info object pointer and node object pointer are always 

changed using CAS.  We know that an update operation flags a location, makes required changes 

and then unflags.  This can be done as follows: 

i. CAS(info_object_pointer, NULL, new_info_object) 

ii. CAS(info_object_pointer, current_info_object, NULL) 

iii. CAS(node_object_pointer, current_node, new_node) 

 The correctness of algorithms using CAS often depends on the fact that, if the CAS 

succeeds, the old value has not been changed since the preceding read.  Suppose the value of an 

info_object_pointer was A when the CAS operation began.  Meanwhile, the value was changed 

by another thread to B and then back to A.  In this scenario, CAS can succeed.  However, it should 

not since the value was not A throughout the operation.  This is called the ABA problem [34, 11]. 

 Flagging checks if the value of the info object pointer is null.  Suppose the value is changed 

to something else and then back to null (ABA problem with A=null and B=some value).  If CAS 

returns true in this scenario, we are still ok.  The purpose of flagging is to make sure that no one 

else has flagged the location (info_object_pointer is null).  While unflagging, we update the value 

of info_object_pointer to null for the current operation.  Once the value of an 

info_object_pointer has been set to non-null, it cannot be changed.  If any other thread attempts 
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to change the value, equation (i) will fail.  Hence, we are sure that there is no ABA problem in 

unflagging (eq ii).  Nodes are referred to by their address.  We are assuming that the algorithm 

will be implemented in a language that supports garbage collection or memory management is 

taken care of to avoid the ABA problem. 

 

4.2 Overview of Algorithm 

Before discussing the functionality of heap operations, let’s summarize the working of update 

operations in general.  When an update operation is called, it first determines which heap 

locations would be affected by the update.  A location is said to be affected by an update if at 

least one of its fields would be changed during the operation.  Before applying an update to 

HeapArray, the operation must flag the location that it can possibly alter.  Each operation has a 

unique info object that is used to flag the required locations on the heap.  After creating an info 

object, the operation checks if the location is already flagged by another concurrent update.  If 

yes, it tries to help the concurrent update to complete and unflag the location.  Unflagging is 

done by setting the info object pointer of the location to null.  After helping, the operation retries 

flagging the location.  Setting the info pointer field to the descriptor is done using CAS.  Once a 

location has been flagged for an operation, we can be sure that as long as there is an active thread 

in the system trying to access this location, the operation in the info object would be completed.  

 Our heap supports three operations: INSERT, DELETE and FIND-MIN.  INSERT operation is 

called with a value. It inserts that value at the next available location in heap.  DELETE operation 

removes one node from heap and returns the value of the root node.  FIND-MIN operation 
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returns the value of root node without actually removing the node from the heap.  We will give 

a brief overview of these function here followed by a detailed explanation in Section 4.4.  

 INSERT(value) adds an entry into Opdict with operation Id and index = 0.  It creates an 

info object I and flags the size of the heap.  It records the current value of size in I and calculates 

the new value by adding 1 to current value.  It creates a new size node with the new value and 

replaces the old size with the new node.  Next, it creates a new node with the value passed as 

input to the function and places it in ‘new size’ location on heap.  After successfully adding the 

new node to the heap, size is unflagged and the index in Opdict is set to ‘new size’.  The new 

node is then bubbled up the heap.  The new node value is compared with the parent node value 

and swapped if the parent value is greater than its own value.  This bubbling up continues until 

the parent node value is less than the current value. 

 DELETE starts with adding an entry into Opdict with operation Id and index = 0.  It creates 

an info object I for delete and flags the size of the heap.  It records the current value of size in I 

and calculates the new value by subtracting 1 from current value.  It creates a new size node with 

the new value and replaces the old size with the new node. Next, it creates a new info object 

with operation = ‘CTR’ and flags the node at location ‘old size’ on the heap.  On successful 

flagging, size is unflagged and the index value in Opdict is set to the new location.  If this node is 

in status ‘BU’, it is set to done and a new info object for operation = ‘UPR’ is created to copy this 

node value to the root.  Next, the operation tries to flag the root node with the info object for 

UPR.  Once root has been flagged, the last node is unflagged.  The current value of root is stored 

in the info object.  A new node is created using information in the info object and placed at the 

root location.  Root node is unflagged.  Status of new root node is ‘BD’.  It is bubbled down the 
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heap by comparing values with its child nodes.  If it is greater than any of the child nodes, it is 

swapped with the smaller node.  Bubbling down continues until it finds its right location on the 

heap. 

 The FIND-MIN operation creates an info object for the find-min operation and flags the 

root node. Initially the value of root in the info object is null.  If the status of root node is ‘done’, 

and the value of root is null in its info object, the current value is stored using the CAS operation.  

FIND-MIN returns the value stored in info object.  

 At any point in all the operations, if an operation is unable to flag a location, or it finds 

that a location is already flagged by another operation, it helps the other operation to complete 

successfully.  By doing so, the heap is made tolerant to slow or crashed threads.  Other operations 

are helped using values stored in the info objects. At each point during an execution, if the node 

corresponding to an operation id is moved up or down the heap, the new location is recorded in 

opdict.  When a node is placed in it’s correct position in the heap, the index in opdict is updated 

to -1.   

 Now that we are familiar with an overview of the algorithm, we will discuss data 

structures, functions and special scenarios in detail in the next few sections. 

 

4.3 Data Structures 

Our heap implementation comprises of two data structures: an array of pointers and a dictionary.  
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4.3.1   Array of pointers 

Traditionally, the heap is implemented as an array without any pointers.  To make changes to the 

heap atomic, we have represented the heap as an array of pointers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Heap representation as array of pointers 
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 Each array index comprises two pointers: the info object pointer and node object pointer.  

Each index in the array starting from 1 represents a node in the heap.  Array index 1 is the root 

node of the heap.  Array index 0 has a special purpose.  It is used to record the size of the heap.  

Figure 4.1 shows an array and corresponding heap. 

4.3.1.1    Info object  

The Info object pointer points to the info object for a location.  An Info object is an operation 

descriptor object.  It contains all necessary details to complete an operation successfully.  Each 

operation creates a unique info object for each step during execution.  A general descriptor class 

contains 5 values: the first three are integer placeholders for values and indices, an operation 

field to store the type of operation and another integer field to store the operation id. 

type HeapArray 
 Nodeptr   node 
 Infoptr info 
 
type Descriptor 
 Integer   value/index 
 Integer  value/index 
 Integer   value/index 
 Operation  {INS/DEL/CTR/UPR/BU/BD} 
 Operation_id  OpId 
 

The general Descriptor class is customized in four ways for various operations.  

type sizeDesc 
 Value   Val in Insert, NULL in Delete 
 Size   Size of heap 
 Operation  INS/DEL/CTR/MIN 
 OpId   operation id 
 
type delDesc 
 Value   Value of last node 
 Old_root_value 
 Operation  UPR 
 OpId   Operation Id 
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type BUDesc 
 Pindex  Parent node index 
 Cindex  Child node index 
 Operation  BU 
 OpId   Operation Id 
 
type BDDesc 
 Pindex  Parent node index 
 Lcindex  Left Child node index 
 Rcindex  Right Child node index 
 Operation  BD 
 OpId   Operation Id 
 

4.3.1.2    Node object 

The Node object pointer is the second component of an array index.  It points to the node object 

for the corresponding heap location.  Each node object represents a node on the heap.  It 

contains value, status, and operation id.  Any information that is intended to be stored on the 

heap can be added to the node object.  The Node at 0th index in the array serves a special purpose.  

It is used to store the size of the heap. 

type Node 
 Value   value 
 Status {BU, BD, done} 
 Operation_Id OpId 
 
HeapArray[0] contains heap size 
 

Value : Size of heap 
status: done 
OpId  : Null 
 
Another data structure used in our implementation is a dictionary. 

4.3.2   Dictionary 

A dictionary or map is an associative container that stores elements formed by a combination of 

a key value and a mapped value, in a specific order.  Any mapped value in a dictionary can be 

searched by passing a key value.  In a heap, where one operation might work on multiple nodes, 
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finding out the exact node where an operation is currently active can be done easily using a 

dictionary. 

 In our implementation, the key to the dictionary is operation id.  An operation id is a 

unique number assigned to each operation.  The mapped value for each key is the index/location 

on the heap where the operation corresponding to the ‘key’ operation id is currently functional.  

 

 

 

  

         

 

 

    Figure 4.2 Operations Dictionary 

 

An INSERT or DELETE operation starts with adding the operation id and index as 0 in the 

dictionary (Example: Operation Id 2563 in Figure 4.2).   Every time a node is moved up or down 

the heap, the new location is updated in the dictionary.  When a node finds it’s right place in the 

heap, its index is changed to -1 to indicate that the operation has completed (Example: Operation 

Id 1248 in Figure 4.2).  Note that space for the completed operations can be reclaimed from the 

dictionary by removing Operation ids with index value equal to -1. 

Having learned the key features of our approach, a brief overview of the algorithm and 

data structures, we are ready to discuss the algorithm and update functions in detail in the 

upcoming sections. 
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4.4 Algorithm 

UPDATEINDEX(opid: Operation Id, index): {Boolean} 1 
 Update index of given opid in Opdict 2 
 
GETPARENT(idx: Node Index): {Index, invalidposition} 3 
 parent <- floor(idx/2) 4 
 if parent < 1 then  5 
  return invalidposition 6 
 return parent 7 
 
GETCHILD(idx: Node Index, side: Left/Right): {Index, invalidposition} 8 
 if side is left then 9 
  child <- 2*idx 10 
 else 11 
  child <- 2*idx + 1 12 
 if child > current_size_of_heap then 13 
  return invalidposition 14 
 return child 15 
       
INSERT(val: Value, opid: Operation Id):{Boolean} 16 
 add opid to Opdict 17 
 create new Info object I with Op = INS  18 
 keep trying CAS until Size is flagged with I 19 
 HELP(Size) 20 
 while (new node is not bubbled up to right position in heap) 21 
  HELP node 22 
 return true 23 
   
DELETE(opid: Operation Id):{value, emptyheap} 24 
 add opid to Opdict 25 
 create new Info object I with Op = DEL  26 
 keep trying CAS until Size is flagged with I 27 
 retvalue = HELP(Size) 28 
 while (node is not bubbled down to right position in heap) 29 
  HELP node 30 
 return retvalue  31 
 
FINDMIN(Opid : Operation Id) : {Value} 32 
 If root node exists 33 
  create new info object I to flag root for operation 'MIN' 34 
 else return 'heap empty' 35 
 while (status of root node != 'done') 36 
  HELP(root) 37 
 CAS to flag root with I 38 
 HELP(root) 39 
 if root value in I is not null then 40 
  return root value in I 41 
 return false 42 
 
 
HELP(cnode: node): {Boolean, value : incase of delete} 43 
 44 
 if node does not need help 45 
  return false46 
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 47 
 copid = opid value of node being helped 48 
 cindex = index of node being helped 49 
 50 
 Evaluate(true) 51 
 Case 1:  node is flagged for Op = INS 52 
 53 
  CAS to update size value in Info 54 
  newsize = size value in Info object of size + 1 55 
  update size pointer to new node(newsize, done, opid) 56 
  a) if newsize = 1 then    //first node in 57 
heap 58 
   add new node at root location <- (val,done,opid) 59 
  b) if newsize > 1 60 
   i) node at location newsize is unflagged  61 
    Create new node <- new node(val, BU, opid) 62 
    CAS to add new node to location newsize 63 
    Update index of opid in Opdict to newsize 64 
    Unflag size node 65 
    66 
   ii) node is flagged 67 
    HELP(node at location newsize)  68 
      69 
 Case 2: status of node = BU  70 
  71 
  a) if node is unflagged then 72 
   Create new Info object I <- BUDesc(NULL, cindex, BU, 73 
opid) 74 
   CAS to flag node with object I 75 
   if unable to flag then HELP(cnode) 76 
 77 
  b) if node is flagged then 78 
   pnode = GETPARENT(cindex) 79 
   i)  status of parent = ‘BD’ and parent has been 80 
flagged  81 
    unflag itself and HELP(pnode) 82 
    return  83 
   ii) pnode is flagged or status of parent is != done  84 
    HELP(pnode) until unflagged and done 85 
    return 86 
   iii) pnode is unflagged and status = 'done' 87 
    CAS to flag parent for 'BU' operation 88 
    HELP(pnode) 89 
    return 90 
   91 
 Case 3: status of node = ‘done’ and node is flagged for ‘BU’ 92 
   93 
  a) if Info object does not have parent index  94 
   CAS to update parent index in Info object 95 
  b) Parent index is present in Info 96 
   i) if childval >= parval  97 
    update child node status <- ‘done’ 98 
    update child node's opid index in Opdict <- -1 99 
    100 
   ii) if childval < parval 101 
    create new nodes P and C nodes with swapped 102 
values 103 
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    a) parent was root node (index 1) 104 
     status of P = 'done' 105 
    b) parent not root node   106 
     status of P = 'BU' 107 
    c) parent status was 'BD' then 108 
     status of C = 'BD' 109 
   Update parent node P and child node C 110 
   Update the opids of both nodes in Opdict 111 
  112 
  Unflag parent and child nodes   113 
  return true 114 
     115 
 116 
 Case 4: node is flagged for op ‘DEL’  // compute size and last 117 
node 118 
   119 
  if old size is not updated in Info object 120 
   CAS to update old size in info object 121 
  if oldsize = 0 then return emptyheap 122 
  newsize = oldsize - 1 123 
  update Size to new node (newsize, done, NULL) 124 

a) if last node in Heap Array is unflagged then 125 
 if last node is root 126 
  CAS to flag root for op ‘UPR’ with value = 0 127 

   else 128 
    CAS to flag last node for op ‘CTR’ 129 
  b) if flagged for current operation then 130 
   Update the opid of node in Opdict to new location 131 
   Unflag Size 132 
   HELP(last node) 133 
  return 134 
   135 
 136 
 Case 5: node is flagged for op ‘CTR’  //copytoroot 137 
  138 
  if status of node!= done then 139 
   update status to 'done' and update index = -1 in 140 
opdict 141 
  if root node is already flagged 142 
   HELP(root) until unflagged 143 
   return 144 
  CAS to flag root with new Info update (node.val, NULL, UPR, 145 
opid) 146 
  unflag last node 147 
  update opid index in Opdict to 1   148 
  HELP(root) and return old root value 149 
  if HELP returns numeric value then return the value 150 
  151 
 152 
 Case 6: node is flagged for op ‘UPR’    //update root HeapArr[1] 153 
 154 
  if old value in Info object has not been updated then 155 
   CAS to update old value of root in Info Object 156 
  if info.node.val = 0 then 157 
   update nodeptr to NULL 158 
  else 159 
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   create new node R(cnode.info.value, BD, 160 
cnode.info.opid) 161 
   update root to R 162 
  unflag root 163 
  return old value of root 164 
 165 
 166 
 Case 7: status of node = ‘BD’ and left node index in Info is 167 
missing 168 
   169 
  if node is unflagged  170 
   Create new Info object I to flag node for 'BD' 171 
   CAS to flag node for I 172 
   if unable to flag then HELP(node) 173 
   return 174 
     175 
  while (left child index in Info object is missing) 176 
   lcnode = GETCHILD(cindex, left) 177 
   a)  if lcnode > heap size 178 

CAS to Update left child index to 0 in I 179 
CAS to Update right child index to 0 in I 180 
return   181 

   b)  if left child is flagged for another operation 182 
 HELP(left child) 183 
 return 184 

   c)  if left child is unflagged      185 
     CAS to flag child with I 186 
    CAS to update left child index in I 187 
    HELP(left child) 188 
    return 189 
 190 
 Case 8: node flagged for ‘BD’ and right node index in Info is 191 
missing 192 
 193 
  while (right child index in Info object is missing) 194 
   rcnode = GETCHILD(cindex, right) 195 
   a)  rcnode > current heap size  196 

 CAS to update left child index to 0 in I  197 
 return 198 

   b)  if right child is flagged for another operation 199 
 HELP(right child) 200 
 return 201 

   c)  if right child is unflagged      202 
     CAS to flag child with I 203 
    CAS to update right child index in I 204 
    HELP(right child) 205 
    return      206 
  207 
 Case 9: node is flagged for ‘BD’ 208 
 209 
  a)  parent value is < left child and right child value 210 
   update all three nodes status to done 211 

 update all node's opid index in Opdict to -1 212 
  b)  left child has the smallest value  213 

 create new node P with left child node attributes 214 
   create new node C with parent node attributes 215 
   if child status is ‘BU’, P node status will be ‘BU’ 216 
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   update parent index pointer to new node P 217 
   update child index pointer to new node P 218 
   update opids for both nodes in Opdict to new location  219 
  c)  right child has the smallest value  220 

 same as above 221 
  Unflag right child, left child and parent node 222 
  return true 223 
 224 
 225 
    Case 10: status of node is ‘done’ and node is flagged for op ‘MIN’ 226 
   CAS to update value of root in Info Object 227 
   unflag root 228 
        229 
   End-evaluate 230 
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4.5 Functions 

Our algorithm consists of three main functions – INSERT, DELETE, FIND-MIN and six sub-

operations – BU, BD, CTR, UPR, GETPARENT and GETCHILD.  As evident from Section 4.3, a major 

part of each operation is performed in the HELP function.  This enables a helping operation to 

execute some part of the code for the operation it is trying to help.  In this section, we will look 

at all the functions in detail.  Various cases of the HELP function will be explained as part of the 

execution flow of the main functions. 

4.5.1   INSERT 

The insert function takes the value to be inserted into the heap and the operation id of the 

current operation as input parameters.  It will add an entry for the operation id in OpDict and 

create a new Info object (line 18).  It will keep trying CAS on heap size (HeapArray[0].infoptr) to 

flag it.  After successfully flagging size, it will call the HELP function in line 20.  At this point, size 

has been flagged for op=INS, hence Case 1 of HELP function will be executed.  It will perform CAS 

to update the old value of size in I.  Since we are using CAS, it will ensure that the value is updated 

atomically.  The new size will be calculated by adding one to the existing heap size.  The new 

node for size will be created using information in I and CASed to HeapArray[0].nodeptr (line 57). 

The new value of size is the heap location where insertion has to be done.  If new size = 1, it 

means that the new node to be added will be the root node.  For root nodes, status of node will 

be ‘done’.  For non-root nodes, new node will be created with status ‘BU’.  If the heap location is 

flagged for another operation, HELP function will be called to complete the ongoing operation 

(line 68) and retry flagging.  If the location is unflagged, the new node will be added to 
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HeapArray[new size(nodeptr)] using CAS.  The index for operation id in OpDict will be updated to 

the new location and the size node will be unflagged. 

 At this point, we have successfully incremented heap size and added the new node to 

heap.  Next, we have to place this node at its right place in the heap, where it is less than the 

parent node and greater than both the child nodes (since it is a min-heap).  This is accomplished 

by calling a series of Bubble Up (BU) operations (line 21). 
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Figure 4.3  INSERT flow chart 
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4.5.1.1    Bubble Up (BU)   

The Bubble up operation moves a node upwards in the heap until it satisfies the heap property.  

A node that requires bubbling up is identified with status = ‘BU’.  A newly added node always has 

status ‘BU’ unless it is the root node.  Once the node is placed in the correct position, status is 

changed to ‘done’.  Corresponding index in OpDict is also updated as the node is moved to higher 

levels.  Code for BU comprises two cases in the HELP function. 

 Case 2 (line 70): node is in status BU.  If the node is unflagged, create info object I for BU 

operation and try to flag the node.  If flagging CAS is unsuccessful, it means some helping 

concurrently active helping thread has flagged it for either BU or some other operation.  Call HELP 

function to work on the info object.  If the node is already flagged or CAS is successful, execution 

continues from line 77.  The index of parent node is obtained by calling GETPARENT function.  If 

status of parent node is BD it means that it is not yet in its right position and is moving down the 

heap (line 79).  If the parent node is flagged for BD, BU will yield by unflagging itself and calling 

HELP for the parent node.  If parent node in status BD is unflagged, it will be flagged for current 

BU.  If parent is already flagged for some other operation, HELP the parent node to bring it to 

‘done’ status.  Once parent node is unflagged and in ‘done’ status it means that it is placed 

correctly in the heap and is available for an operation (line 85).  Perform CAS to flag parent node 

with I (Info object for BU) and call the HELP function. 

 Case 3 (line 90):  It is the next step after Case 2.  After parent node has been successfully 

flagged for BU, the code in Case 3 is executed.  Update the parent index field in I.  Obtain the 

child and parent node values using indices stored in I.  We are sure that the values would not be 

changed by concurrent threads as they are updated in I after flagging the nodes.  If the parent 
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value is less than the child value, mark status of both nodes as ‘done’ since they are satisfying the 

heap property.  If child is greater than parent, the nodes need to be swapped.  We will make 

copies of parent and child nodes and update node pointers.  If old parent was a root, the new 

parent status will be ‘done’ else new parent status will be ‘BU’.  If old parent was ‘BD’, the new 

child status will be ‘BD’ else it will be ‘done’.  Update indices in OpDict for both the nodes. 

 Satisfying of the heap property by the new node marks completion of INSERT operation.  

The point in the execution when the status of the new node is updated to ‘done’ marks the 

linearization point of INSERT.  Adding a new node to the heap only makes it a part of an 

intermediate heap.  A node becomes part of the actual heap only after reaching the linearization 

point.   

4.5.2   DELETE 

The Delete function removes the root node from the heap and returns its value.  The root node 

is replaced by the last node in the heap.  The location of the last node is obtained from the heap 

size.  The DELETE operation starts with adding an entry for the operation id in OpDict and creating 

the new Info object (line 26).  The process of updating heap size is the same as in INSERT.  It will 

keep trying CAS on the heap size (HeapArray[0].infoptr) to flag it.  After successfully flagging size, 

it will call HELP function in line 28.  At this point, size has been flagged for op=DEL, hence Case 4 

of the HELP function will be executed.  It will perform CAS to update the old value of size in I.  The 

new size will be calculated by subtracting one from the existing heap size.  A new node for size 

will be created and CASed to HeapArray[0].nodeptr (line 120).  The last node of heap, identified 

by the new value of size, is to be placed at the root location.  If the last node is flagged for another 

operation, it will call HELP to have the node unflagged.  If the last node is also the root node (line 
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122), it will be flagged with the info object for op ‘UPR’ with new root value = 0.  If it is an 

unflagged non-root node, it will be flagged for op = ‘CTR’.  After successfully flagging the last 

node, the index for operation id in OpDict will be updated to the new location and size node will 

be unflagged. 

 At this point, we have successfully decremented the heap size and flagged the last node 

of the heap.  Next, we have to copy it to the root node. 

  



www.manaraa.com

47 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Start Record Operation id in Opdict 
Create an info object I for DELETE 

CAS to flag Size with info object I 

Able to 
flag? 

Help active 
operation on Size 

S = Size - 1 
Create new node with value S 
Replace Size with new node 

CAS to flag location S with I 

S flagged 
for current 
operation? 

Help active 
operation on S 

No 

Yes 

No 

Yes 

Update index corresponding to this operation in Opdict 
Unflag Size 

Replace root with last node/NULL 
Record the old value of root 

Bubble down new root node until it is greater than child nodes 
Return old value of root 

Stop 

Is S = 0? 
Create info object 

I for op = ‘CTR’ 
Create info object 
I with Op = ‘UPR’ 

No Yes 

Figure 4.4  DELETE flow chart 



www.manaraa.com

48 
 

4.5.2.1   Copy To Root (CTR) 

This is a sub-operation of DELETE to copy the last node of the heap to HeapArray[0] location.  Code 

for CTR is Case 5 of HELP function.   If status of the last node is not ‘done’, it means that it is not yet 

a part of the actual heap.  CTR will update the status to ‘done’ and the index in OpDict to -1 to indicate 

that the node is placed in its correct location in the heap (line 136).  Note that this is not necessarily 

true.  The last node might be in BU status; however, it will still be marked as done to make it a part 

of the actual heap.  It will eventually satisfy the heap property when it is bubbled down the heap.  

Check if the current root node is already flagged.  If yes, call HELP for unflagging the root node by 

completing the active operation.  Create a new info object for operation ‘UPR’ with details of the last 

node.  The root value field in the info object will be NULL this time.  CAS to update 

HeapArray[1].infoptr with this info object.  After successfully flagging the root node, unflag the last 

node.  Call HELP to execute the next step UPR. 
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Figure 4.5  CTR Flow chart 
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executed for the root node (root is the only node in heap and is being deleted), update 

HeapArray[1].nodeptr to NULL (line 152).  If last node is different than the root node, create a 

new node using values from the info object and status = ‘BD’.  Use CAS to place this new node at 

HeapArray[1].nodeptr (line 155).  Unflag root node and return the value of the old root stored in 

the info object.   

 So far we have successfully removed the root node from the heap and replaced it with 

another heap node.  This new root must be moved downwards in the heap until it satisfies the 

heap property.  This is done by the Bubble Down operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  UPR Flow chart 
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4.5.2.3   Bubble Down (BD) 

A node that requires bubbling down is identified with status = ‘BD’.  A new root node placed as 

part of DELETE operation always has status ‘BD’.  Once the node is placed in the correct position, 

status is changed to ‘done’.  The corresponding index in OpDict is also updated as the node is 

moved to lower levels.  The code for BD comprises three cases in HELP function. 

 Case 7 (line 160): node is in status BD and infoptr.lindex is NULL.  This scenario will occur 

when either the node has not been flagged for BD or if the node is flagged but left child is being 

worked on.  If current node (parent node) is flagged for some other operation, call HELP.  Create 

info object I for ‘BD’.  Flag the current node using CAS (line 164).  If left child is not yet flagged, 

obtain left child index by calling GETCHILD with parameters current index and left (line 169).  If 

left child index is greater than size of heap (left child does not exist), update left child index in 

info object to 0. A binary heap is filled in left to right order, so if left child does not exist, we can 

assume that right child is also absent, hence we will update right child index as well to 0 in info 

object.  If left child exists and is flagged for another operation, call HELP.  If left child is available 

for an operation (it is unflagged), flag it with info object for BD.   

 Case 8 (line 183): node is in status BD and infoptr.rindex is NULL.  This scenario occurs 

when parent node and left child node have been flagged for BD.  Obtain the index for right child.  

If right child does not exist, update right child index to 0 in info object (line 188).  If right child is 

flagged for some other operation, call HELP.  If it is unflagged, flag for BD info object (line 193).  

Update the right child index in info object.   

 Case 9 (line 199): Node is flagged for ‘BD’.  This code will be executed when all three nodes 

(parent node and two child nodes) have been flagged for BD operation.  If parent value is less 
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than both child values, update all three node status to ‘done’.  Else find the smallest child and 

compare with parent. Create copies of parent and smallest child nodes.  If child status is ‘BU’, 

new parent status will be ‘BU’.  Update the nodeptr of parent and child nodes to point to new 

nodes.  Update indices in Opdict.  Unflag all three nodes. 

 Satisfying the heap property by the new node marks the completion of DELETE operation.  

The point in execution when the root node is replaced by the last node is the linearization point 

of DELETE.  The value of root node obtained by the operation just before this CAS is the return 

value of the function. 

4.5.3   FIND-MIN 

FINDMIN operation returns the highest priority/ minimum value (in case of min-heap) in the 

heap. This is usually the value of the root node. It does not remove any node from the heap.  A 

FINDMIN operation executed on an empty heap returns ‘empty heap’ message (line 36).  If root 

node exists, but status of root is not ‘done’, FINDMIN calls HELP function to bring the root to 

‘done’ status.  It creates an Info object I for operation = ‘MIN’ (line 35).  It will repeatedly try to 

flag the root with I.  On successful flagging, call HELP(root). 

 At this point, the status of root is ‘done’ and it has been flagged for ‘MIN’, hence Case 10 

of HELP() is executed (line 217).  The value of the current root node is stored in info object I using 

CAS and the root is unflagged.  FINDMIN returns the value stored in the info object. 

 The advantage of flagging for FINDMIN is that even if the owner thread crashes or is 

delayed, some operation trying to access the root will perform Case 10 of HELP() and free the 

root node for the next operation.  It will also ensure that FINDMIN has a valid root value to return.  

The linearization point of this operation is the CAS to the store root value in info object (line 218). 
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4.5.4   GETPARENT 

This function returns the index of the parent node.  It takes in an integer (index of current node) 

as parameter.  Left child and right child of a node are stored in 2*index and 2*index + 1 location 

on the heap.  This function obtains the parent index by dividing input integer by 2 (line 4).  If the 

index obtained is less than one, it returns the message ‘Invalid position/ Parent does not exist’ 

(line 6) else it returns the parent index (line 7). 

4.5.5   GETCHILD 

This function returns the index of left/right child node. It takes in an integer (index of current 

node) and left or right as parameters.  As mentioned earlier, left child and right child of a node 

are stored in 2*index and 2*index + 1 location on heaps.  For the left child index, it multiplies the 

input integer by 2 (line 10).  For the right child index, it multiplies by 2 and adds 1 (line 12).  If the 

index obtained is greater than heap size, it returns message ‘Invalid position/ child does not exist’ 

(line 14) else it returns the child index (line 15). 

 

4.6 Different Cases of BU/BD using examples 

Bubble-Up(BU) and Bubble-down(BD) are sub-operations of Insert and Delete.  These operations 

help in traversing the heap and placing a node in its right place.  BD works in a top to bottom 

direction whereas BU works in a bottom-up way.  Also, concurrent bubble-up operations might 

try to access the same nodes on the heap.  That makes these operations vulnerable to conflicts.  

We will look at some scenarios of BD and BU including conflicting cases. 
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i. Parent status is BD and both child nodes are in status ‘done’.  Parent node is lesser than 

both child nodes. 

 

 

 

 

 

     Figure 4.7 BD scenario (i) 

 
ii. Parent status is BD and both child nodes are in status ‘done’.  Parent node is greater than 

one child node. 

 
 

 

 

 

 

Figure 4.8 BD scenario (ii) 

 

iii. Parent status is BD and both child nodes are in status ‘done’.  Parent node is greater than 

both the child nodes. 

 

 

 

 

 

Figure 4.9 BD scenario (iii) 
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iv. Parent status is BD and one child node is in status BU while the other is ‘done’.  Parent 

node is lesser than both child nodes.  In this case, both BD and BU operations will end up 

with the same configuration of nodes. 

 
 
 
 
 
 
 
 

Figure 4.10 BD scenario (iv) 

 
v. Parent status is BD and one child node is in status BU while the other is ‘done’.  Parent 

node is greater than the child node in status ‘BU’ but lesser than the one in status ‘done’.  

For BD and BU, nodes status will be different, depending on which operation flagged the 

parent node first.  If BD takes place first: 

 
 
 
 
 
 
 
 

 

Figure 4.11 BD scenario (v) 
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If BU takes place first: 
 

 

 

 

 

 

Figure 4.12 BD scenario (vi) 

 

vi. Parent status is BD and one child node is in status BU while the other is ‘done’.  Parent 

node is greater than the child node in status ‘BU’ but lesser than the one in status ‘done’.  

For BD and BU, nodes status will be the same. 

 

 

 

 

 

Figure 4.13 BD scenario (vii) 

 

vii. Parent status is BD and both child status is BU.  Parent is lesser than both child nodes. 
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Figure 4.14 BD scenario (viii) 
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If left BU executes first: 

 

 
 

 

 

     Figure 4.15 BD scenario (ix) 

 

If right child BU executes first: 

 

 

 

 

 

Figure 4.16 BD scenario (x) 

 
viii. Parent status is BD and both child status is BU.  Parent is lesser than left child node. 

If BD or left child BU executes first: 

 

 
 
 
 
 
 
 

Figure 4.17 BD scenario (xi) 
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If right child BU executes first: 

 

 

 

 

 

Figure 4.18 BD scenario (xii) 

 
 

ix. Parent node is in status ‘done’ and child nodes are in status BU.  Parent node is greater 

than child nodes.  If left BU executes first: 

 

 

 

 

 

 

Figure 4.19 BD scenario (xiii) 

 
If right BU executes first: 
 
 
 
 
 

 

 

 

Figure 4.20 BD scenario (xiv) 
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4.7 Pseudocode 

UPDATEINDEX(opid: Operation Id, index): {Boolean} 1 
 for opid in Opdict 2 
  Index = index 3 
 
GETPARENT(idx: Node Index): {Index, invalidpos} 4 
 parent <- floor(idx/2) 5 
 if parent < 1 then  6 
  return invalidpos 7 
 return parent 8 
 
GETCHILD(idx: Node Index, side: Left/Right): {Index, invalidpos} 9 
 if side = left then 10 
  child <- 2*idx 11 
 else 12 
  child <- 2*idx + 1 13 
 if  child > HeapArr[0].node.val then 14 
  return invalidpos 15 
 return child 16 
       
INSERT(val: Value, opid: Operation Id):{true} 17 
 if opid not in Opdict then 18 
  Opdict.add(opid, I, val, 0) 19 
 while (Opdict.opid.index = 0) 20 

 if HeapArr[0].infoptr = NULL then 21 
  I <- new SizeDesc(val, NULL, INS, opid) 22 
  CAS(HeapArr[0].info, NULL, I) 23 
  HELP(HeapArr[0]) 24 
 else 25 
  HELP(HeapArr[0]) 26 
 27 
while (Opdict.opid.index != -1) 28 
 HELP(HeapArr[Opdict.opid.index]) 29 
 30 
return true 31 

   
DELETE(opid: Operation Id):{value, emptyheap} 32 
 if opid not in Opdict then 33 
  Opdict.add(opid, D, 0, 0) 34 
 while (Opdict.opid.index = 0) 35 
  if HeapArr[0].infoptr = NULL then 36 
   I <- new sizeDesc(NULL, NULL, DEL, opid) 37 
   CAS(HeapArr[0].info, NULL, I) 38 

  retvalue = HELP(HeapArr[0]) 39 
  if retvalue is numeric 40 
   value = retvalue 41 
 else 42 
  HELP(HeapArr[0]) 43 
    44 
while (Opdict.opid.index != -1) 45 
 HELP(HeapArr[Opdict.opid.index]) 46 
 47 
return value 48 



www.manaraa.com

60 
 

FINDMIN(Opid : Operation Id) : {Value} 49 
  50 
 I <- new SizeDesc(NULL, NULL, MIN, opid) 51 
 while (HeapArr[1].status != done) 52 
  HELP(HeapArr[1]) 53 

if CAS(HeapArr[1].info, NULL, I) 54 
 HELP(HeapArr[1]) 55 
 if HeapArr[1].info.val != NULL 56 
  return HeapArr[1].info.val  57 
return false 58 
 

HELP(cnode: node): {Boolean, value : incase of delete} 59 
 60 
 copid = cnode.node.opid 61 
 if Opdict.copid.index != cnode.index(HeapArr) 62 
  return false 63 

 64 
Evaluate(true) 65 
Case 1: cnode.info.op = INS 66 
 67 

  if HeapArr[0].info.size = NULL then 68 
       CAS(HeapArr[0].info.size, NULL, HeapArr[0].node.value)  69 
  newsize = HeapArr[0].info.size + 1 70 
  HeapArr[0].node <- new node(newsize, done, opid) 71 
  if newsize = 1 then  //first node in heap 72 
   HeapArr[newsize].node <- new node(val,done,opid) 73 
  else 74 
   if HeapArr[newsize].infoptr = NULL then 75 
    N <- new node(val, BU, opid) 76 
    if CAS(HeapArr[newsize].node, NULL, N) then 77 
     Opdict.opid.index = newsize 78 
     if HeapArr[0].info.opid =    79 
      HeapArr[0].node.opid then 80 
      HeapArr[0].infoptr <- NULL 81 
   else 82 
    HELP(HeapArr[newsize]) 83 
  return true 84 
      85 
 Case 2: cnode.node.status = BU  //till flagging parent 86 
  87 
  if cnode.infoptr = NULL then 88 
   I <-new BUDesc(NULL, cnode.index(HeapArr), BU,   89 
    cnode.node.opid) 90 
   if !CAS(cnode.info, NULL, I) then 91 
    HELP(cnode) 92 
  else 93 
   pnode = GETPARENT(cindex) 94 
   if pnode.status = ‘BD’ and pnode.infoptr != NULL then 95 
    unflag itself and HELP(pnode) 96 
    return true 97 
   if pnode.infoptr != NULL or pnode.status != done then 98 
    HELP(pnode) 99 
   CAS(pnode.info, NULL, cnode.info) 100 
   HELP(pnode) 101 
  return true 102 
 103 
 Case 3: cnode.node.status = ‘done’ and cnode.info.op = ‘BU’ 104 
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   105 
  if cnode.info.pindex = NULL 106 
   CAS(cnode.info.pindex, NULL, cnode.index(HeapArr)) 107 
  childval = HeapArr[cnode.info.cindex].node.val 108 
  parval   = HeapArr[cnode.info.pindex].node.val 109 
  if ( childval >= parval ) then 110 
   HeapArr[cnode.info.cindex].node.status <- ‘done’ 111 
   Opdict.(Cnode.info.opid).index <- -1 112 
    113 
  else 114 
   if cnode.info.pindex = 1 then //root node 115 
    P <- new node(childval, done, cnode.info.opid) 116 
   else  117 
    P <- new node(childval, BU, cnode.info.opid) 118 
   if HeapArr[cnode.info.pindex].node.status = 'BD' then 119 
    C <- new node(parval, BD,     120 
     HeapArr[cnode.info.pindex].node.opid) 121 
   else 122 
    C <- new node(parval, done,     123 
     HeapArr[cnode.info.pindex].node.opid) 124 
   HeapArr[cnode.info.pindex] <- P 125 
   HeapArr[cnode.info.cindex] <- C 126 
   if cnode.info.pindex = 1 then 127 
    Opdict.(Cnode.info.opid).index <- -1 128 
   else  129 
    Opdict.(Cnode.info.opid).index <-    130 
        cnode.info.pindex 131 
   132 
  if HeapArr[cnode.info.cindex].info.opid =    133 
   HeapArr[cnode.info.cindex].node.opid then 134 
   HeapArr[cnode.info.cindex].infoptr <- NULL 135 
  if cnode.info.opid = cnode.node.opid then 136 
   cnode.infoptr <- NULL 137 
   138 
  return true 139 
     140 
 Case 4: cnode.info.op = ‘DEL’      // compute size and last node 141 
   142 
  if cnode.info.oldsize = NULL then         143 
   CAS(cnode.info.oldsize, NULL, cnode.node.value) 144 
  oldsize <- cnode.info.oldsize  145 
  if oldsize = 0 then  146 
   return emptyheap 147 
  newsize = oldsize - 1 148 
  S <- new node(newsize, done, NULL) 149 
  HeapArr[0].node <- S 150 
  if HeapArr[oldsize].infoptr = NULL then 151 
  I <- new sizeDesc(NULL, oldsize, CTR, cnode.info.opid)  152 
  if CAS(HeapArr[oldsize].info, NULL, I) then 153 
   Opdict.opid.index = oldsize 154 
   if HeapArr[0].info.opid = cnode.node.opid then 155 
    HeapArr[0].infoptr <- NULL 156 
  HELP(HeapArr[oldsize]) 157 
  return true 158 
 159 
 Case 5: cnode.info.status = ‘CTR’ //copytoroot 160 
  161 
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  if cnode.node.status!= done then 162 
   cnode.node.status <- done 163 
   oldopid <- cnode.node.opid 164 
   Opdict[oldopid].index = -1 165 
  val = cnode.node.value 166 
  I <- new delDesc(val, NULL, UPR, opid) 167 
  if HeapArr[1].infoptr = NULL then //root flag 168 
   if CAS(HeapArr[1].info, NULL, I) then 169 
    if cnode.info.opid = cnode.node.opid then 170 
    HeapArr[oldsize].infoptr <- NULL 171 
    Opdict[cnode.node.opid].index = 1 172 
     173 
  if rootval = HELP(HeapArr[1]) is numeric //help anyway 174 
   return rootval 175 
  return true 176 
 177 
 Case 6: cnode.info.status = ‘UPR’    //update root HeapArr[1] 178 
 179 
  if cnode.info.oldval = NULL then 180 
   CAS(cnode.info.oldval, NULL, cnode.node.value) 181 
  R <- new node(cnode.info.value, BD, cnode.info.opid) 182 
  HeapArr[1].node <- R 183 
  rootval = HeapArr[1].info.oldval 184 
  if cnode.info.opid = cnode.opid then 185 
   cnode.infoptr <- NULL 186 
  return rootval 187 
 188 
 Case 7: cnode.node.status = ‘BD’ and cnode.info.lcnode = NULL 189 
 190 
  if cnode.infoptr = NULL then 191 
   I <- new BDDesc(cnode.index(HeapArr), NULL, NULL, BD, 192 
     cnode.node.opid) 193 
   if !CAS(cnode.info, NULL, I) then 194 
    HELP(cnode) 195 
  else 196 
   while (cnode.info.lcnode = NULL) 197 
    lcnode = GETCHILD(cindex, left) 198 
    if lcnode < HeapArr[0].node.val then 199 
     if HeapArr[lcnode].infoptr = NULL then 200 
      CAS(HeapArr[lcnode].info, NULL, 201 
node.info) 202 
     if HeapArr[lcnode].infoptr = 203 
cnode.infoptr then 204 
      CAS(cnode.info.lcnode, NULL, 205 
lcnode) 206 
 207 
     HELP(HeapArr[lcnode]) 208 
    else 209 
     CAS(cnode.info.lcnode, NULL, 0)  210 
  211 
  return true 212 
 213 
 Case 8: cnode.info.status = ‘BD’ and cnode.info.rcnode = NULL 214 
 215 
  while (cnode.info.rcnode = NULL) 216 
   rcnode = GETCHILD(cindex, right) 217 
   if rcnode < HeapArr[0].node.val then 218 
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    if HeapArr[rcnode].infoptr = NULL then 219 
     CAS(HeapArr[rcnode].info, NULL, 220 
cnode.info) 221 
     if HeapArr[rcnode].infoptr = 222 
cnode.infoptr then 223 
      CAS(cnode.info.rcnode, NULL, 224 
rcnode) 225 
    HELP(HeapArr[rcnode])  226 
   else 227 
    CAS(cnode.info.rcnode, NULL, 0) 228 
  return true 229 
  230 
 Case 9: cnode.info.status = ‘BD’ 231 
 232 
  lchildval = HeapArr[cnode.info.lcindex].node.val 233 
  rchildval = HeapArr[cnode.info.rcindex].node.val 234 
  parval    = HeapArr[cnode.info.pindex].node.val 235 
  if (lchildval >= parval ) and (rchildval >= parval) then 236 
   HeapArr[cnode.info.pindex].node.status  <- ‘done’ 237 
   Opdict.(Cnode.info.opid).index <- -1 238 
   HeapArr[cnode.info.lcindex].node.status <- ‘done’ 239 
   Opdict.(Cnode.info.opid).index <- -1 240 
   HeapArr[cnode.info.rcindex].node.status <- ‘done’ 241 
   Opdict.(Cnode.info.opid).index <- -1 242 
  else 243 
   if (lchildval < rchildval) 244 
    smalval  = lchildval 245 
    smalidx  = cnode.info.lcindex 246 
    smalstat = 247 
HeapArr[cnode.info.lcindex].node.status 248 
   else 249 
    smalval = rchildval 250 
    smalidx = cnode.info.rcindex 251 
    252 
   P <- new node(smalval,       253 
    HeapArr[cnode.info.smalidx].node.status,   254 
    HeapArr[cnode.info.smalidx].node.opid) 255 
   C <- new node(parval, BD, cnode.info.opid) 256 
    257 
   HeapArr[cnode.info.pindex] <- P 258 
   HeapArr[cnode.info.smalidx] <- C 259 
   Opdict.(Cnode.info.opid).index <- smalidx 260 
  261 
  if HeapArr[cnode.info.rcindex].info.opid =    262 
   HeapArr[cnode.info.rcindex].node.opid then 263 
   HeapArr[cnode.info.rcindex].infoptr <- NULL 264 
  if HeapArr[cnode.info.lcindex].info.opid =    265 
   HeapArr[cnode.info.lcindex].node.opid then 266 
   HeapArr[cnode.info.lcindex].infoptr <- NULL 267 
  if HeapArr[cnode.info.pindex].info.opid =    268 
   HeapArr[cnode.info.pindex].node.opid then 269 
   HeapArr[cnode.info.pindex].infoptr <- NULL 270 
 271 
  return true 272 
 273 
    Case 10: if cnode.node.status = ‘done’ and cnode.info.op = ‘MIN’ 274 
   CAS(cnode.info.val, NULL, cnode.node.val) 275 
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   if cnode.info.opid = cnode.opid then 276 
    cnode.infoptr <- NULL 277 
   return true 278 
   279 
 End-evaluate 280 
return true  281 
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Chapter 5 

Correctness Proofs 

 

In this chapter, we present a detailed correctness proof of our Heap algorithm.  It includes four 

sections.  We will refer to a heap in progress as intermediate heap and a stable heap, for which 

no update operation is in progress, as actual heap. 

 Section 5.1 will show some basic properties and observations for our Heap 

implementation.  This includes showing properties that must always hold for a stable heap like 

parent-child relationship and validity of a node.  It will also examine rules for state transitions of 

a node and how states indicate the overall status of heap. 

 Section 5.2 will highlight the progress conditions.  We will show how different operations 

make progress concurrently and the role of flagging to ensure there is no ABA problem.  We will 

also prove that the proposed operations are non-blocking. 

 Section 5.3 will examine how conflicts are handled during an execution on Heap.  It will 

address possible conflicts between INSERT, DELETE, FIND-MIN, BU, BD, CTR and UPR operations.  

We will look at the possibilities of concurrent operations trying to flag same node and how these 

situations are handled to maintain non-blocking property of the approach. 

 Section 5.4 will discuss linearizability of the approach.  We will define a linearization point 

for each operation that terminates. 
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5.1 Basic Properties 

In this section, we will discuss the observations from pseudocode and basic properties that must 

hold true for the actual heap. 

Property 5.1. Let x and y be node objects.  If index(y) = 2 * index(x) or 2* index(x) +1, then x.yalue 

<= y.value in a Min-Heap.   Here, x is the parent node and y is one of the child nodes of x.  x is also 

<= the child nodes of y and so on. 

Property 5.2. For three nodes x, y, z where index(y) = 2 * index(x) and index(z) = 2 * index(x) + 1, 

y and z are the child nodes and x.   

  x.value <= y.value and x.value <= z.value 

  Direct relationship between y.value and z.value is not established. 

Observation 5.3. A node x is reachable in actual heap iff 

i. For some index i, Heap[i].nodeptr = x.   x is pointed to by an index in Heap.    

ii. Index i < Heap[0].nodeptr.value.   Index i is less than size of Heap. 

iii. x.status = ‘done’ or ‘BD’ 

Observation 5.4. For two nodes x and y, Node x < Node y iff  x.nodeptr.value is less than  

y.nodeptr.value. 

Observation 5.5. Node at location i is flagged if Heap[i].infoptr != NULL.  Any update at a location 

can be done only after successfully flagging the location. 

Property 5.6. A node is said to be placed in correct position in min-heap if it is greater than its 

parent and lesser than its child nodes. 

Lemma 5.7. A node is placed in correct position in heap in our implementation, if  

i. node.status = done  
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ii. node.infoptr.op != CTR 

Proof.  Node status is changed to 'done' when it reaches its correct positon in heap.   An exception 

to this case is sub-operation 'Copy- to-Root'.   This is performed as a part of DELETE operation.  It 

changes the status of last node of heap to 'done' if it was 'BU' and flags it for copying to root.  

Hence, even if the node was not in correct position in heap, it is marked as done.  On being copied 

to root, it is 'Bubbled down' to its correct position.  

Observation 5.8. The contents of a Node object are never changed.   

 At any point during an operation, contents of node object are never changed.  If node 

value needs to be changed at any location, new node object is created and node pointer is 

updated using CAS to point to new node.         

Observation 5.9.  No field of an info object is changed except once (if it was previously null). 

Lemma 5.10.  Status of a newly inserted node at the last location in a heap is initially BU.  It can 

only be updated to status ‘done’. 

Proof.  A new node is created at line 76.  Initial status is set to 'BU'.  There are four possible 

operations on this node: 

i. Swap due to 'BU' operation initiated by the node itself – update to done or BU 

ii. Swap due to 'BU' operation initiated by a child node – update to done or BU 

iii.  Swap due to 'BD' operation initiated by the parent node – update to done or BU 

iv. 'Copy to root' operation initiated by a Delete request – update to done 

         In all four scenarios, status is either unchanged from ‘BU’ or updated to ‘done’. 

Lemma 5.11.  If a node is in status ‘done’, it can only be changed to ‘BD’.   
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Proof.  Once a node has attained status ‘done’, there can be three possible operations on this 

node: 

i. Swap due to 'BU' operation initiated by the child – no change in status 

ii. Swap due to 'BD' operation initiated by parent node – no change in status 

iii. 'Copy to root' operation initiated by a Delete request – no change in status 

iv. ‘Update root’ operation initiated by a Delete request – update status to ‘BD’  

         In all scenarios, only possible update in status is ‘BD’. 

Observation 5.12.  A node can belong to two operation ids. 

 Op id 1- The INSERT operation which added node to heap. 

 Op id 2- DELETE operation that move the node to root location. 

Property 5.13.  If node at index 0 has value = 0, it indicates empty heap.   

Observation 5.14.  Node at location 0 (Size of heap) does not give the actual size of heap.  It rather 

gives the number of nodes in heap + number of ongoing insert operations. 

 A node is considered part of actual heap only if the status has been changed to ‘done’ 

from ‘BU’.  Nodes with status ‘BD’ are part of actual heap (using observation that BD status is 

reached only after done status).  Value of ‘size’ is incremented at the beginning of an insert 

operation.  Thus, even if node is not yet part of actual heap, it is counted towards size of heap. 

Actual size of heap = Number of nodes with status ‘done’ or ‘BD’ 

Observation 5.15.  If size.value = ‘1’, node is inserted with status ‘done’.  In all other cases, status 

of a newly inserted node is ‘BU’. 

Observation 5.16.  For any index i in Heap, Heap[i].infoptr = null inbetween two sub-operations. 
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 When a sub-operation completes, it unflags the node by setting Heap[i].infoptr = null.  

Next sub-operation begins with flagging Heap[i] with new Info object. Example: line 91 flags a 

node and line 100 unflags it.  

Lemma 5.17.  A location i in heap, where I is less than heap size, is empty only if Heap[i].infoptr = 

null and Heap[i].nodeptr = null. 

Proof.   

i. if Heap[i].infoptr points to the Info object with details of operation to be performed 

at location i in Heap.  Heap[i].infoptr is not null if some operation is being executed 

on the node. 

ii. Heap[i].nodeptr points to the actual node at location i in Heap. 

iii. It is possible to have Heap[i].infoptr = Not null and Heap[i].nodeptr is null if an Insert 

operation has been initiated to add node at location i in heap.  Location i has been 

flagged, but node is yet to be added. 

iv. It is possible to have Heap[i].infoptr = null and Heap[i].nodeptr not null inbetween sub 

operations (using Observation 5.16). 

Thus, only if both Heap[i].infoptr and Heap[i].nodeptr = null, location i is empty.  

Lemma 5.18.  At most one operation can be performed at a given location in Heap at one time.   

Proof.  In order to execute any operation on a location i in heap, it must be flagged by setting 

Heap[i].infoptr to an Info object.  This setting of flag is done using CAS operation. 

 CAS(HeapArr[i].info, Null, Info) 

This ensures that if multiple threads are trying to flag same location on heap, only one succeeds.  

The winning thread’s operation is executed at that location (using details in Info object). 
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Lemma 5.19.  For two reachable nodes x and y, operation id of x != operation id of y. 

Proof.  A unique id is assigned to each operation.   

i. Initially, Operation id of a node is the id of INSERT operation which added node to the 

Heap.  Since one insert operation adds only one node to heap, id will be unique for 

every node. 

ii. If a node is moved to root location, as part of a DELETE operation then the operation 

id of node is changed to id of the DELETE operation.  Since a delete operation moves 

only one node to root, id will be unique for every node. 

Property 5.20.  Opid.index in Opdict indicates the Heap location where operation Opid needs to 

be executed. i.e.  the location of the node for which node.operation id = Opid.   

(Location of actual node of Opid, it does not indicate the node Opid might be helping) 

Observation 5.21.  There can be at most one BD operation active at root at a given time. 

 This follows from Lemma 5.18.  

Lemma 5.22.  Node in status 'BD' is a part of the actual heap. 

Proof.  DELETE operation on heap changes the status of last node of heap to 'done' if it was 'BU' 

and flags it for CTR operation.  On being copied to root, status is updated to ‘BD’ to move it down 

the heap to it's correct position.  Thus, it is evident that a node is marked as ‘done’ before it’s 

status is changed to ‘BD’. 

Observation 5.23.  Node in status ‘done’ is not necessarily available to be worked upon by an 

operation.  It can be flagged only if node.infoptr != NULL. 

 Status ‘done’ of a node indicates that it is in the right position in heap.  It can still be a 

part of a BU or BD initiated by its child or parent node.  
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5.2 Progress Conditions 

Observation 5.24.  Successful completion of a ‘BD’ operation on three nodes (parent and two 

children) ensures that at most one node out of the three is in status ‘BD’. 

 BD operation is initiated by the parent node.  It flags both child nodes in status ‘done’/’BU’ 

for operation.  If any of the child nodes’ status is ‘BD’, it is worked upon first.  This ensures that 

when operation ends, there can be at most one node in status “BD’.  This is evident by referring 

to images in Section 4.6 for various scenarios of BD. 

Lemma 5.25.  Successful completion of a ‘BU’ operation on two nodes (parent and child) ensures 

that at most one node out of the two is in status ‘BU’. 

Proof.  Child node initiates a BU operation.  After successful flagging of child, parent node is 

flagged by setting parent node’s infoptr to info object for BU operation.  Values are compared 

for swap. If child is lesser than parent, nodes are not swapped and child is marked as ‘done’.  If 

parent is larger, child node moves up the node with status ‘BU’.  If both parent and child were in 

status ‘BU’ as the beginning of operation, child BU first bring parent node to ‘done’ status and 

then continues with its own operation.  This ensures that a completed ‘BU’ operation leaves at 

most one node in status ‘BU’.   

Observation 5.26.  One BD operation on three nodes (one parent and two children) consists of 

all nodes in status ‘BD’ only if the parent node is root of the heap. 

Observation 5.27. There cannot be a chain of continuous nodes in status ‘BD’.  Two nodes in status 

‘BD’ will always be interleaved with at least one node in status ‘done’/’BU’ except for root node. 

 This follows from Observations 5.24 and 5.26. 

Corollary 5.28.  There can be a chain of continuous BU nodes in heap. 
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 If a continuous stream of insert operation is performed on the heap, new nodes will be 

added to end of the heap in status ‘BU’.  This can lead to a chain of nodes where node status is 

‘BU’ in all levels of heap except root node. 

Lemma 5.29.  Chain of BU nodes in Heap is deadlock-free. 

Proof.  A Bubble Up operation is initiated by child node.   It brings the parent node to ‘done’ status 

(if previously not ‘done’) and then makes comparison between the parent and initiating-child 

node.    

 Observation 5.30 stated that root node is inserted with status ‘done’.  In all other cases, 

status of a newly inserted node is ‘BU’.  Thus, 

i. Topmost parent node in a chain of BU nodes is guaranteed to be in status ‘done’.   

ii. One of the child nodes of the topmost parent node will succeed in flagging the parent for 

‘BU’ operation and make progress for ‘BU’ operation. 

iii. As supported by previous lemma, now there would be 2 nodes in status ‘done’. 

iv. By induction, subsequent BU operations will resolve the chain of any number of nodes in 

status ‘BU’. 

Lemma 5.30.  FIND-MIN operation always returns a valid value of root of heap. 

Proof.  FIND-MIN operation flags the root node with Info.value = NULL.   This value is updated 

only if status of root node = ‘done’.   Line 267 in code CAS(cnode.info.val, NULL, 

cnode.node.val) ensures that the value is updated only once in info structure.  Hence, FIND-

MIN always returns a valid value. 

Observation 5.31.  All info flags and nodes are changed using CAS to avoid ABA problem. 
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5.3 Conflict Resolution 

This section discusses all possible conflicts during an execution on heap. 

Observation 5.32.  An INSERT operation cannot start until it is able to flag ‘Size’ of heap. 

 An INSERT operation tries to access the size of heap to locate next available location in 

heap for inserting new node.  Once the location is identified and flagged, new node is inserted 

with status ‘BU’ and moved to correct location in Heap by series of BU operations. 

Observation 5.33.  A DELETE operation starts only when ‘Size’ of heap is successfully flagged. 

 A DELETE operation tries to access the size of heap to locate last location in heap for 

swapping with root node.  Once the location is identified and flagged, node is moved to root and 

then Bubbled down to correct location in Heap by series of BD operations. 

Observation 5.34.  A FIND-MIN operation does not flag ‘Size’ of heap. 

 FIND-MIN operation works only on root of the heap.  It returns a valid value of the root 

node by directly accessing Heap[1].infoptr and Heap[1].nodeptr.    

Lemma 5.35.  ‘Size’ of heap can be modified by only one operation at a time. 

Proof.  Size of the Heap is accessed by two operations INSERT and DELETE to locate last used/next 

available location on heap.  Both the operations modify the ‘Size’ by incrementing/decrementing 

the existing value.  It is necessary that ‘Size’ of heap is altered only one by operation at a time to 

avoid accidentally overwriting nodes in heap.  

From Observation 5.5, we can conclude that ‘Size’ can be modified only by obtaining a flag.   

Line 23 and 38: CAS(HeapArr[0].info, NULL, I)in INSERT and DELETE code ensures that only 

one amongst any number of concurrent operations will be successful in flagging the size of heap 

at a time. 
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5.3.1   INSERT-INSERT Conflict 

Observation 5.36.   Concurrent INSERT operations are serialized while accessing the ‘Size’ of heap. 

 Observation 5.32 and Lemma 5.35 establish that an INSERT operation starts by trying to 

flag ‘Size’, only one will succeed if many compete.  Thus, it will serialize concurrent operations at 

the first step. 

Lemma 5.37.  Concurrent INSERT operations never try to insert a new node at same location in 

Heap. 

Proof.  Only one of concurrent INSERT operations can access ‘Size’ at a given time (Using 

Observation 5.36).  Winning operation increments the ‘Size’ and then unflags it.  Next INSERT 

operation would work on the incremented value of size.  This ensures that two INSERTS are never 

performed on same location in Heap.  

Observation 5.38.  Multiple INSERT operations make progress concurrently after securing a 

location in heap. 

 Once a location has been identified to insert node in heap, INSERT operations continue to 

make progress using multiple ‘BU’ sub-operations until node is placed in right location in heap. 

5.3.2   DELETE-DELETE Conflict 

Observation 5.39.  Concurrent DELETE operations are serialized while accessing the ‘Size’ of heap. 

 Using Observation 5.33 and Lemma 5.35 we can infer that a DELETE operation starts with 

attempt to flag ‘size’.  Use of CAS for flagging selects one as winner among multiple competing 

threads.  Thus, it will serialize concurrent operations at the first step. 

Lemma 5.40.  Concurrent DELETE operations never try to replace root of Heap with same node. 
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Proof.   Only one of concurrent DELETE operations can access ‘Size’ at a given time (from 

Observation 5.39).  Winning operation decrements the ‘Size’ (Line 149 S <- new node(newsize, 

done, NULL)) and then unflags it.  Next DELETE operation would work on the decremented value 

of size.  This ensures that two DELETES never try to swap root with same node in Heap. 

Lemma 5.41.  Concurrent DELETE operations never return same root node value. 

Proof.  We know from Observation 5.5 that root must be flagged before performing any 

operation on it.  Concurrent DELETE operations, will try to flag root node for sub-operation ‘UPR 

– Update root’.  Line 167 and 169 in code perform CAS to flag root with new Info object.  

 I <- new delDesc(val, NULL, UPR, opid) 

 CAS(HeapArr[1].info, NULL, I)  

 CAS will select one winner amongst competing operations.  Winning operation will update 

the root node and return old root value.  Root is unflagged after successful completion of one 

‘UPR’ operation and is available to be flagged by another operation.  Next winner will work on 

the updated root node.   

 Hence, concurrent DELETE operations will not return same root node value. 

Observation 5.42.  Multiple DELETE operations make progress concurrently after updating root 

of heap. 

 Once old root value has been obtained and root of the heap is updated, DELETE 

operations continue to make progress using multiple ‘BD’ sub-operations until node is placed in 

right location in heap. 



www.manaraa.com

76 
 

5.3.3   INSERT-DELETE Conflict 

Observation 5.43.  Concurrent INSERT and DELETE operations are serialized while accessing the 

‘Size’ of heap. 

 Observation 5.32, Observation 3.33 and Lemma 5.35 establish that both INSERT and 

DELETE operations starts by trying to flag ‘Size’, only one will succeeds among many competitors.  

Thus, it will serialize concurrent operations at the first step. 

Property 5.44.   If an INSERT operation is followed by a concurrent DELETE operation, INSERT gets 

the priority. 

- If an INSERT operation is not yet finished adding node to heap, DELETE will help the 

INSERT.   

- If there is only one node in heap, DELETE will return the value.   

Else, it will update the status of node to ‘done’ and flag it for operation ‘CTR’. 

- By updating status to ‘done’, DELETE completes the INSERT operation and node is added 

to the actual heap.   

Property 5.45.   If a DELETE operation is followed by a concurrent INSERT operation, DELETE gets 

the priority. 

- If a DELETE operation is not yet finished moving last node to root, INSERT will help DELETE. 

- If there is only one node in heap, INSERT will add root to the Heap.   

Else, it will help DELETE until the last location is unflagged. 
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5.3.4   BU-BU Conflict 

Property 5.46.   Multiple BU operations make progress concurrently if they do not work on same 

nodes. 

Property 5.47.  Concurrent BU operations on same nodes are prioritized in top-down order. 

 BU operations are initiated by child nodes. 

- If parent is in status ‘BU’, Child-BU will help parent-BU to complete and bring parent to 

‘done’ status 

- If both children of a node are trying to perform BU operation, only one child-BU will 

succeed in flagging the parent.  Line 100 CAS(pnode.info, NULL, cnode.info) decides 

the winning operation.  Winner continues to make progress while other child-BU helps 

the winner.   

5.3.5   BD-BD Conflict 

Property 5.48.  Multiple BD operations make progress concurrently if they are not being executed 

on same nodes. 

Property 5.49.  Concurrent BD operations on same nodes are prioritized in bottom-up order. 

 BU operations are initiated by parent nodes.  If child node is in status ‘BD’, parent-BD will 

help child-BD to complete and flag for own operation. 

5.3.6  BD-BU Conflict 

Property 5.50. BD and BU operations currently active on mutually exclusive nodes make progress 

concurrently. 
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 If the operations are not active on same nodes, they can continue the operation 

independently.  Only if they are working on the same node, their execution steps would conflict. 

Lemma 5.51.  If Parent status is BU and child status is BD, there is no conflict. 

Proof.  BU operation is initiated by child node and works in upper direction of heap (current level 

+1).  BD operation is initiated by parent node and works with (current level -1) nodes.  Thus, if 

parent node status is BU and child node is BD, both operations will be executed in opposite 

directions in Heap and will not conflict each other.  

Observation 5.52.  If Parent status is BD and child status is BU, there is conflict.   

 This is the opposite scenario of Lemma 5.51.  In this case, both the operations will work 

on same nodes leading to conflict. 

Property 5.53.  If Parent status is BD and child status is BU, BD gets the priority. 

Case 1: If parent has been flagged for BD, child-BU operation will unflag the child node, yielding 

to BD.  It will help to complete the parent-BD operation.  Line 95 in code accomplishes this task. 

Case 2: If parent is unflagged, i.e.  BD operation has not started yet, child-BU will make progress 

and flag the parent for BU operation.  Line 100 in code performs this step. 

Case 2 ensures that if BU is not yielding to BD forever. 

Lemma 5.54.  In case of conflict, BU is starvation-free.  It does not yield to BD forever. 

Proof.  Case 2 above, shows that BU yields to BD only if BD has been initiated by the parent node.  

If child-BU finds that parent node’s infoptr = NULL, it will perform CAS(pnode.info, NULL, 

cnode.info) in line 100 to flag parent node for BU operation and make progress.  This ensures 

that BU will not starve yielding to BD forever.  
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5.3.7   INSERT- FINDMIN Conflict 

Observation 5.55.  Concurrent INSERT and FIND-MIN operations conflict only at the root node.   

 From Observation 5.34 we know that FIND-MIN does not access size of heap.  It works 

only on root of the heap, hence that is the only point of conflict with an INSERT operation.   

Lemma 5.56.  Conflict between Concurrent INSERT and FIND-MIN operations is resolved by 

flagging.   

Proof.  Both the operations will try to flag the root node using CAS(Heap[0].infoptr, NULL, new 

info) , only one will succeed. 

- If INSERT operation wins, FIND-MIN will help INSERT and retry flagging. 

- If FIND-MIN operation wins, it will find that Heap[1].node is empty.  It will return message 

that Heap is empty.  INSERT will help FIND-MIN. 

Hence, conflict is resolved by flagging. 

5.3.8   DELETE- FINDMIN Conflict 

Observation 5.57.  Concurrent DELETE and FIND-MIN operations conflict only at the root node.   

Observation 5.34 stated that a FIND-MIN operation does not flag ‘Size’ of heap.  It works only on 

root of the heap, hence that is the only point of conflict with a DELETE operation. 

Observation 5.58.  Conflict between Concurrent DELETE and FIND-MIN operations is resolved by 

flagging.   

Both the operations will try to flag the root node using CAS( root.infoptr, NULL, new info) , only 

one will succeed. 

- If DELETE operation wins, FIND-MIN will help DELETE and retry flagging. 
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- If FIND-MIN operation wins, it will return the value of the root in status ‘done’.   DELETE 

will help FIND-MIN. 

5.3.9   BU - FINDMIN Conflict 

Observation 5.59.  Concurrent BU and FIND-MIN operations conflict only at the root node.   

FIND-MIN works only on the root node; hence it can be the only point of conflict with BU 

operations. 

Observation 5.60.  At most two Concurrent BU can conflict with one FIND-MIN operation at a 

given time. 

 Root node has two child nodes who are the possible contenders to initiate a BU operation 

on root at a given time.  BU initiated by these two child nodes will compete with FIND-MIN to 

flag root node.  Since the maximum number of child nodes that root can have is two, we can 

conclude that at a given time, at most two concurrent BU operations will conflict with one FIND-

MIN. 

Observation 5.61.  Any number of FIND-MIN operations can conflict with one BU operation at a 

given time. 

 Any number of FIND-MIN operations can be active on the heap.  All these would try to 

flag the root node at same time and would conflict with the BU operations initiated by the 

children of root.  Thus, one BU might compete with any number of FIND-MIN operations.   

Observation 5.62.  Conflict between Concurrent BU and FIND-MIN operations is resolved by 

flagging.   

 From Observation 5.59 it is evident that there can be multiple concurrent operations 

trying to work on root node.  All the operations will try to flag the root node using 
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CAS(HeapArr[1].infoptr, NULL, new info) , only one will succeed.  Winner will 

continue its operation on the root node, while others will help the winner complete and retry 

flagging. 

5.3.10   BD- FINDMIN Conflict 

Observation 5.63.  Concurrent BD and FIND-MIN operations conflict only at the root node.   

 Since FINDMIN works only on root of the heap, that is the only point of conflict with a BD 

operation. 

Observation 5.64.  At most one Concurrent BD can conflict with one FIND-MIN operation at a 

given time. 

 BD operation on root is a sub operation of DELETE.  In Observation 5.21 we said that there 

can be at most one BD operation active on root at a given time.  This BD will compete with FIND-

MIN to flag root node.   

Observation 5.65.  Any number of FIND-MIN operations can conflict with one BU operation at a 

given time. 

 Any number of FIND-MIN operations can be active on the heap at same time.  All these 

would try to flag the root node simultaneously and would conflict with the BD operation on root.   

Observation 5.66. Conflict between Concurrent BD and FIND-MIN operations is resolved by 

flagging.   

 Both the operations will try to flag the root node using CAS(HeapArr[1].infoptr, 

NULL, new info) , only one will succeed.  Winner will continue its operation on the root 

node, while others will help the winner complete and retry flagging. 
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5.3.11   FINDMIN - FINDMIN Conflict 

Observation 5.67.  Conflict between Concurrent FIND-MIN operations is resolved by flagging.   

 Any number of FIND-MIN operations can be active on the heap at same time.  All these  

would try to flag the root node simultaneously.  Of all threads executing 

(CAS(HeapArr[1].infoptr, NULL, new info), only one will succeed and continue 

its operation on the root node.  Other threads will retry flagging after helping the winner 

complete. 

5.3.12   CTR - CTR Conflict 

Lemma 5.68.  Concurrent CTR operations conflict only at the root node.   

Proof.  CTR is a sub-operation of DELETE that operation brings the ‘last heap node’ to ‘done’ 

status and then tries to flag root for ‘UPR’ operation.  In Lemma 5.40 we proved that two DELETE 

operations cannot work on same ‘last heap node’.   Hence, we can guarantee that a CTR operation 

also works on an exclusive node.   Next, CTR tries to swap its current node with root of heap.   

Thus, root is the only point of conflict in concurrent CTR operations.    

Observation 5.69. Conflict between Concurrent CTR operations is resolved by flagging.   

 In continuation to Lemma 5.68, concurrent CTR operations active on more than one nodes 

attempt to simultaneously flag the root node.  Line 458 in code performs this operation: 

CAS(HeapArr[1].infoptr, NULL, new info).  Winning thread successfully flags 

root for UPR and continues operation.   

5.3.12   CTR - BU Conflict 

Observation 5.70.   Conflict between concurrent BU and CTR operations is resolved by flagging. 
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 Root node is the point of conflict between BU and CTR operations.   BU operation on child 

nodes of root try to flag root for BU while CTR operation tries to flag root for UPR.   All these 

operations execute CAS on root, hence there is only one winner. 

5.3.13   CTR - BD Conflict 

Observation 5.71.   Conflict between Concurrent BD and CTR operations is resolved by flagging.   

 Concurrent BD and CTR operations try to flag the root node using 

CAS(HeapArr[1].infoptr, NULL, new info) , only one will succeed.  Winner will 

continue it’s operation on the root node, while others will help the winner complete and retry 

flagging. 

5.3.14   CTR – FINDMIN Conflict 

Observation 5.72.  Conflict between Concurrent FIND-MIN and CTR operations is resolved by 

flagging.   

 We know that FINDMIN works only on root of the node, hence it is the only possible point 

of conflict.  When concurrent FINDMIN and CTR operations try to flag the root node, only one 

will succeed.  CAS will select one winner among competing threads who will continue its 

operation on the root node.  

5.3.15   UPR - UPR Conflict 

Lemma 5.73. UPR operation does not flag any node on heap. 

Proof.  CTR and UPR both are sub-operations of DELETE.  CTR creates an info object with 

information required for UPR and flags the root node with that info object.  UPR creates a new 

node using information in info object and updates the old value of root in info object.  Then, it 
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replaces old root with the new node.  New node created by UPR has status ‘BD’.  On successful 

replacing of root, UPR unflags the root node.  In this entire process, no node was flagged as part 

of UPR operation.   

Observation 5.74.  There can be only one active UPR operation at a given time. 

 It is clear from Lemma 5.73 that UPR operation works only on root of the heap.  It replaces 

root of the heap with a new node in status ‘BD’ and returns the old value.  UPR sub operation 

starts only after CTR has flagged the root.   Since, there is only one root, there can be only one 

active UPR operation at a given time. 

 

5.4 Linearization Points 

In this section, we will show that the proposed approach is linearizable and each operation has a 

well-defined linearization point. 

Theorem 5.75.  An INSERT operation is linearized when status of the node is changed to ‘done’. 

Proof.  An INSERT operation adds a new node to next available location in heap.   If this is the first 

node in heap (root node), it is inserted with status ‘done’.  Else, the new node is inserted with 

status ‘BU’.  It is moved up the heap by a series of BU/BD operations until it is smaller than its 

parent node.  Once it finds the correct location, status is changed to ‘done’.  Execution of line 111 

HeapArr[cnode.info.cindex].node.status <- ‘done’ or line 163 cnode.node.status <- 

done is the linearization point of INSERT operation. 

 When a node is in status ‘BU’ it is only a part of the intermediate heap.  Only at the 

linearization point, it becomes a part of the actual heap.   
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 If a DELETE operation attempts to replace root with another node, it makes sure that 

status of the node is ‘done’.  This is because root node cannot be replaced with a value that is 

not a part of the actual heap.  If node status is ‘BU’, INSERT changes the status to ‘done’ in line 

162:  if cnode.node.status!= done then 

  cnode.node.status <- done. 

 

Theorem 5.76.  A DELETE operation is linearized when root is successfully replaced with new 

value. 

Proof.  A DELETE operation returns the root value and replaces root with last node in heap.  Status 

of the new root node is set to ‘BD’ and it is moved down the heap by a series of BD/BU operations 

till it is smaller than it’s child nodes.   

 Linearization point of a DELETE operation is the point when UPR sub-operation 

successfully replaces root with new node (last node of heap).  Line 183  HeapArr[1].node <- R 

where R <- new node(cnode.info.value, BD, cnode.info.opid).  

 At this point, we also have the last value of root node stored in the info structure which 

is returned by the UPR function.  Line 180 in code. 

 if cnode.info.oldval = NULL then 

   CAS(cnode.info.oldval, NULL, cnode.node.value) 

 
Theorem 5.77.  A FIND-MIN operation is linearized when value of root is successfully saved in 

info structure.   

Proof.  A FIND-MIN operation flags root node in status ‘done’ with an info structure for find-min.  

This info structure has an empty placeholder for value of root.  After successful flagging of root 
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in line 54 CAS(HeapArr[1].info, NULL, I), where I <- new SizeDesc(NULL, NULL, MIN, 

opid)  we are sure that no more changes can be made to root until FIND-MIN unflags the root.  

Next, in line 267 CAS(cnode.info.val, NULL, cnode.node.val) value of root is stored in info 

structure.  This CAS will be successful only for the first time when placeholder is empty.  This will 

ensure that a valid value of root in status ‘done’ is returned by the FIND-MIN operation. 

 

Note: If several concurrent operations are linearized at exactly the same point during an 

execution, the order of their linearization points is arbitrary. 
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Chapter 6 

Conclusion and Future Work 

 

We proposed a non-blocking implementation of a heap in which all updates to shared nodes of 

the heap are done atomically in an asynchronous shared memory system.  Our implementation 

offers lock-free insert, delete and wait-free find-min operations.  This implementation is free of 

the drawbacks of blocking algorithms and ensures that if there is an active thread in the system, 

operations will complete.  Concurrent movement of nodes in the same or opposite directions in 

the heap does not block the way of threads trying to insert or delete nodes for the heap.  Our 

approach is an amalgamation of ideas from various existing ideas and implementations, with a 

few heap-specific tricks.  We have represented the heap as an array of pointers as opposed to 

the traditional representation as an array.  Potential conflicts in operations when multiple 

threads are trying to access the same node are confronted by the usage of flagging and yielding. 

We established the linearizability of the algorithm which proves it is theoretically correct.  

 We have identified two improvement areas in the algorithm.  Currently, heap size is a 

bottleneck.  Any insert or delete operation must update the single shared variable size at the first 

step.  If this can be avoided in some way, it would make the algorithm more efficient.  Insert and 

delete operations might be improved by selecting random locations for insertion and deletion to 

reduce contention on the same nodes.   
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 A thread helps other operations if it encounters them on its path in the heap.  If a thread 

crashes leaving an operation incomplete after the linearization point, and no other active thread 

works on the same node, we cannot guarantee wait-freedom in such a scenario.  Adding more 

details to the help mechanism such that a thread is guaranteed to be helped within a fixed time, 

would strengthen progress condition of the algorithm. 

 Implementing this algorithm and conducting experimental evaluation for performance 

would be an interesting future work.  It would give a better insight into possible conflicting 

scenarios and the ABA problem.  A similar technique can be applied to other data structures and 

different types of heaps. 
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